

VIPA System SLIO

SM-AIO | | Handbuch

HB300 | SM-AIO | | de | 19-20

Analoge Signal-Module - SM 03x

VIPA GmbH Ohmstr. 4

91074 Herzogenaurach Telefon: 09132-744-0 Telefax: 09132-744-1864 E-Mail: info@vipa.com Internet: www.vipa.com

Inhaltsverzeichnis

1	Allgemein	. 7
	1.1 Copyright © VIPA GmbH	7
	1.2 Über dieses Handbuch	8
	1.3 Sicherheitshinweise	9
2	Grundlagen und Montage	10
	2.1 Sicherheitshinweis für den Benutzer	
	2.2 Systemvorstellung	
	2.2.1 Übersicht	
	2.2.2 Komponenten	12
	2.2.3 Zubehör	
	2.2.4 Hardware-Ausgabestand	15
	2.3 Abmessungen	
	2.4 Montage Peripherie-Module	
	2.5 Verdrahtung Peripherie-Module	21
	2.6 Verdrahtung Power-Module	
	2.7 Demontage Peripherie-Module	27
	2.8 Hilfe zur Fehlersuche - LEDs	30
	2.9 Aufbaurichtlinien	31
	2.10 Allgemeine Daten	33
3	Analoge Eingabe	35
	3.1 Allgemeines	
	3.2 Analogwert	
	3.3 Messbereiche und Funktionsnummern	
	3.4 031-1BB10 - AI 2x12Bit 0(4)20mA - ISO	
	3.4.1 Technische Daten	
	3.4.2 Parametrierdaten	51
	3.4.3 Diagnose und Alarm	54
	3.5 031-1BB30 - AI 2x12Bit 010V	58
	3.5.1 Technische Daten	60
	3.5.2 Parametrierdaten	62
	3.5.3 Diagnosedaten	63
	3.6 031-1BB40 - AI 2x12Bit 0(4)20mA	66
	3.6.1 Technische Daten	68
	3.6.2 Parametrierdaten	71
	3.6.3 Diagnosedaten	72
	3.7 031-1BB60 - AI 2x12Bit 0(4)20mA - Sensor	75
	3.7.1 Technische Daten	77
	3.7.2 Parametrierdaten	80
	3.7.3 Diagnosedaten	81
	3.8 031-1BB70 - AI 2x12Bit ±10V	84
	3.8.1 Technische Daten	86
	3.8.2 Parametrierdaten	89
	3.8.3 Diagnosedaten	90
	3.9 031-1BB90 - AI 2x16Bit TC	93
	3.9.1 Technische Daten	96
	3.9.2 Parametrierdaten	100
	3.9.3 Diagnose und Alarm	105

3.10 0	31-1BD30 - AI 4x12Bit 010V	109
3.10.1	Technische Daten	111
3.10.2	Parametrierdaten	113
3.10.3	Diagnosedaten	114
3.11 0	31-1BD40 - AI 4x12Bit 0(4)20mA	117
3.11.1	Technische Daten	119
3.11.2	Parametrierdaten	122
3.11.3	Diagnosedaten	123
	31-1BD70 - AI 4x12Bit ±10V	
3.12.1	Technische Daten	128
	Parametrierdaten	
	Diagnosedaten	
	31-1BD80 - AI 4x16Bit R/RTD	
	Technische Daten	
	Parametrierdaten	
	Diagnose und Alarm	
	31-1BF60 - AI 8x12Bit 0(4)20mA	
3.14.1		
-	Parametrierdaten	
	Diagnosedaten	
	31-1BF74 - AI 8x12Bit ±10V	
	Technische Daten	
	Parametrierdaten	
	Diagnosedaten	
	31-1CA20 - AI 1x16(24)Bit DMS	
	Anschlussvarianten	
	Ein-/Ausgabebereich	
	Technische Daten	
3.16.4	Funktionsweise	
3.16.5	Parametrierdaten	
	Einsatz der Filterfunktion	
	Kalibrierung	186
	Ruheerkennung	186
	Diagnose	187
	31-1CB30 - AI 2x16Bit 010V	
	Technische Daten	
	Parametrierdaten	
	Diagnose und Alarm	
3.18 0	31-1CB40 - AI 2x16Bit 0(4)20mA	201
	Technische Daten	
3.18.2	Parametrierdaten	207
	Diagnose und Alarm	
3.19 0	31-1CB70 - AI 2x16Bit ±10V	213
3.19.1	Technische Daten	215
3.19.2	Parametrierdaten	218
3.19.3	Diagnose und Alarm	221
3.20 0	31-1CD30 - AI 4x16Bit 010V	225
3.20.1	Technische Daten	227
3.20.2	Parametrierdaten	230
3.20.3	Diagnose und Alarm	232

3.21 031-1CD35 - AI 4x16Bit 010V	236
3.21.1 Technische Daten	238
3.21.2 Parametrierdaten	241
3.21.3 Diagnosedaten	242
3.22 031-1CD40 - AI 4x16Bit 0(4)20mA	245
3.22.1 Technische Daten	247
3.22.2 Parametrierdaten	251
3.22.3 Diagnose und Alarm	254
3.23 031-1CD45 - AI 4x16Bit 0(4)20mA	258
3.23.1 Technische Daten	260
3.23.2 Parametrierdaten	263
3.23.3 Diagnosedaten	264
3.24 031-1CD70 - AI 4x16Bit ±10V	267
3.24.1 Technische Daten	269
3.24.2 Parametrierdaten	272
3.24.3 Diagnose und Alarm	275
3.25 031-1LB90 - AI 2x16Bit TC	279
3.25.1 Technische Daten	281
3.25.2 Parametrierdaten	285
3.25.3 Diagnosedaten	288
3.26 031-1LD80 - AI 4x16Bit R/RTD	291
3.26.1 Technische Daten	293
3.26.2 Parametrierdaten	297
3.26.3 Diagnosedaten	301
3.27 031-1PAxx - Al1x 3Ph 230/400V	
3.27.1 Technische Daten	307
3.27.2 Sicherheitshinweise	312
3.27.3 Grundlagen	315
3.27.4 Anschluss	318
3.27.5 Parametrierdaten	
3.27.6 Messgrößen	325
3.27.7 Prozessdatenkommunikation	
3.27.8 Fehlermeldungen und Diagnose	347
3.27.9 VIPA Hantierungsbaustein	350
Analoge Ausgabe	351
4.1 Allgemeines	351
4.2 Analogwert	351
4.3 Ausgabebereiche und Funktionsnummern	352
4.4 032-1BB30 - AO 2x12Bit 010V	355
4.4.1 Technische Daten	357
4.4.2 Parametrierdaten	359
4.4.3 Diagnosedaten	360
4.5 032-1BB40 - AO 2x12Bit 0(4)20mA	363
4.5.1 Technische Daten	365
4.5.2 Parametrierdaten	367
4.5.3 Diagnosedaten	369
4.6 032-1BB70 - AO 2x12Bit ±10V	
4.6.1 Technische Daten	374
4.6.2 Parametrierdaten	376

4

4.6.3 Diagnosedaten	378
4.7 032-1BD30 - AO 4x12Bit 010V	381
4.7.1 Technische Daten	383
4.7.2 Parametrierdaten	385
4.7.3 Diagnosedaten	386
4.8 032-1BD40 - AO 4x12Bit 0(4)20mA	389
4.8.1 Technische Daten	391
4.8.2 Parametrierdaten	393
4.8.3 Diagnosedaten	395
4.9 032-1BD70 - AO 4x12Bit ±10V	398
4.9.1 Technische Daten	400
4.9.2 Parametrierdaten	402
4.9.3 Diagnosedaten	404
4.10 032-1CB30 - AO 2x16Bit 010V	407
4.10.1 Technische Daten	409
4.10.2 Parametrierdaten	411
4.10.3 Diagnosedaten	412
4.11 032-1CB40 - AO 2x16Bit 0(4)20mA	415
4.11.1 Technische Daten	417
4.11.2 Parametrierdaten	419
4.11.3 Diagnosedaten	421
4.12 032-1CB70 - AO 2x16Bit ±10V	424
4.12.1 Technische Daten	426
4.12.2 Parametrierdaten	428
4.12.3 Diagnosedaten	430
4.13 032-1CD30 - AO 4x16Bit 010V	433
4.13.1 Technische Daten	435
4.13.2 Parametrierdaten	437
4.13.3 Diagnosedaten	438
4.14 032-1CD40 - AO 4x16Bit 0(4)20mA	441
4.14.1 Technische Daten	443
4.14.2 Parametrierdaten	445
4.14.3 Diagnosedaten	447
4.15 032-1CD70 - AO 4x16Bit ±10V	450
4.15.1 Technische Daten	452
4.15.2 Parametrierdaten	454
4 15 3 Diagnosedaten	456

VIPA System SLIO Allgemein

Copyright © VIPA GmbH

1 Allgemein

1.1 Copyright © VIPA GmbH

All Rights Reserved

Dieses Dokument enthält geschützte Informationen von VIPA und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.

Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von VIPA und dem Besitzer dieses Materials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl VIPA-intern als auch - extern) geändert werden, es sei denn in Übereinstimmung mit anwendbaren Vereinbarungen, Verträgen oder Lizenzen.

Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an: VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH Ohmstraße 4, D-91074 Herzogenaurach, Germany

Tel.: +49 9132 744 -0 Fax.: +49 9132 744-1864 EMail: info@vipa.de

http://www.vipa.com

Es wurden alle Anstrengungen unternommen, um sicherzustellen, dass die in diesem Dokument enthaltenen Informationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Das Recht auf Änderungen der Informationen bleibt jedoch vorbehalten.

Die vorliegende Kundendokumentation beschreibt alle heute bekannten Hardware-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben.

EG-Konformitätserklärung

Hiermit erklärt VIPA GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften übereinstimmen. Die Übereinstimmung ist durch CE-Zeichen gekennzeichnet.

Informationen zur Konformitätserklärung

Für weitere Informationen zur CE-Kennzeichnung und Konformitätserklärung wenden Sie sich bitte an Ihre Landesvertretung der VIPA GmbH.

Warenzeichen

VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S und Commander Compact sind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.

SPEED7 ist ein eingetragenes Warenzeichen der profichip GmbH.

SIMATIC, STEP, SINEC, TIA Portal, S7-300, S7-400 und S7-1500 sind eingetragene Warenzeichen der Siemens AG.

Microsoft und Windows sind eingetragene Warenzeichen von Microsoft Inc., USA.

Portable Document Format (PDF) und Postscript sind eingetragene Warenzeichen von Adobe Systems, Inc.

Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzeichen ihrer jeweiligen Eigentümer.

Allgemein VIPA System SLIO

Über dieses Handbuch

Dokument-Support

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefax: +49 9132 744-1204 EMail: documentation@vipa.de

Technischer Support

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefon: +49 9132 744-1150 (Hotline)

EMail: support@vipa.de

1.2 Über dieses Handbuch

Zielgruppe

Das Handbuch ist geschrieben für Anwender mit Grundkenntnissen in der Automatisierungstechnik.

Aufbau des Handbuchs

Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine abgeschlossene Thematik.

Orientierung im Dokument

Als Orientierungshilfe stehen im Handbuch zur Verfügung:

- Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs
- Verweise mit Seitenangabe

Verfügbarkeit

Das Handbuch ist verfügbar in:

- gedruckter Form auf Papier
- in elektronischer Form als PDF-Datei (Adobe Acrobat Reader)

Piktogramme Signalwörter

Besonders wichtige Textteile sind mit folgenden Piktogrammen und Signalworten ausgezeichnet:

GEFAHR!

Unmittelbar drohende oder mögliche Gefahr. Personenschäden sind möglich.

VORSICHT!

Bei Nichtbefolgen sind Sachschäden möglich.

Zusätzliche Informationen und nützliche Tipps.

VIPA System SLIO Allgemein

Sicherheitshinweise

1.3 Sicherheitshinweise

Bestimmungsgemäße Verwendung

Das System ist konstruiert und gefertigt für:

- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank

GEFAHR!

Das Gerät ist nicht zugelassen für den Einsatz

in explosionsgefährdeten Umgebungen (EX-Zone)

Dokumentation

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb

VORSICHT!

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

Entsorgung

Zur Entsorgung des Geräts nationale Vorschriften beachten!

Sicherheitshinweis für den Benutzer

2 Grundlagen und Montage

2.1 Sicherheitshinweis für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen

VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen. Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:

Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin. Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen. Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen. Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Baugruppen

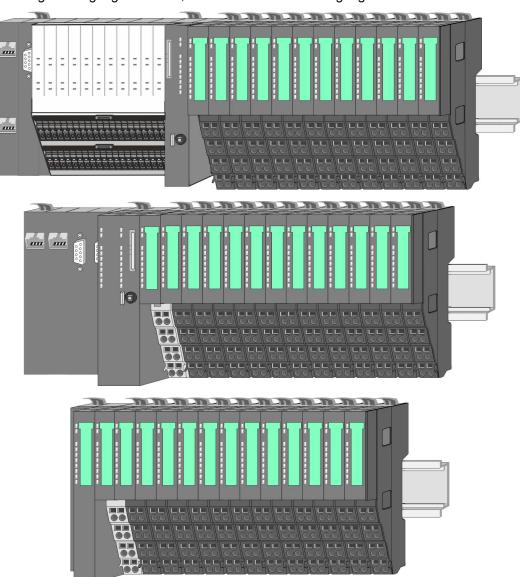
Verwenden Sie für den Versand immer die Originalverpackung.

Messen und Ändern von elektrostatisch gefährdeten Baugruppen Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potenzialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.

VORSICHT!


Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

Systemvorstellung > Übersicht

2.2 Systemvorstellung

2.2.1 Übersicht

Das System SLIO ist ein modular aufgebautes Automatisierungssystem für die Montage auf einer 35mm Tragschiene. Mittels der Peripherie-Module in 2-, 4- und 8-Kanalausführung können Sie dieses System passgenau an Ihre Automatisierungsaufgaben adaptieren. Der Verdrahtungsaufwand ist gering gehalten, da die DC 24V Leistungsversorgung im Rückwandbus integriert ist und defekte Elektronik-Module bei stehender Verdrahtung getauscht werden können. Durch Einsatz der farblich abgesetzten Power-Module können Sie innerhalb des Systems weitere Potenzialbereiche für die DC 24V Leistungsversorgung definieren, bzw. die Elektronikversorgung um 2A erweitern.

Systemvorstellung > Komponenten

2.2.2 Komponenten

- CPU (Kopf-Modul)
- Bus-Koppler (Kopf-Modul)
- Zeilenanschaltung
- Peripherie-Module
- Zubehör

VORSICHT!

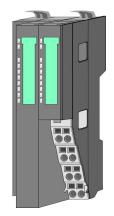
Beim Einsatz dürfen nur Module von VIPA kombiniert werden. Ein Mischbetrieb mit Modulen von Fremdherstellern ist nicht zulässig!

CPU 01xC

Bei der CPU 01xC sind CPU-Elektronik, Ein-/Ausgabe-Komponenten und Spannungsversorgung in ein Gehäuse integriert. Zusätzlich können am Rückwandbus bis zu 64 Peripherie-Module aus dem System SLIO angebunden werden. Als Kopf-Modul werden über die integrierte Spannungsversorgung sowohl die CPU-Elektronik, die Ein-/Ausgabe-Komponenten als auch die Elektronik der über den Rückwandbus angebunden Peripherie-Module versorgt. Zum Anschluss der Spannungsversorgung, der Ein-/Ausgabe-Komponenten und zur DC 24V Leistungsversorgung der über Rückwandbus angebunden Peripherie-Module besitzt die CPU abnehmbare Steckverbinder. Durch Montage von bis zu 64 Peripherie-Modulen am Rückwandbus der CPU werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.

CPU 01x

Bei der CPU 01x sind CPU-Elektronik und Power-Modul in ein Gehäuse integriert. Als Kopf-Modul werden über das integrierte Power-Modul zur Spannungsversorgung sowohl die CPU-Elektronik als auch die Elektronik der angebunden Peripherie-Module versorgt. Die DC 24V Leistungsversorgung für die angebunden Peripherie-Module erfolgt über einen weiteren Anschluss am Power-Modul. Durch Montage von bis zu 64 Peripherie-Modulen an der CPU werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.


VORSICHT!

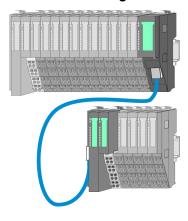
CPU-Teil und Power-Modul der CPU dürfen nicht voneinander getrennt werden!

Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

Systemvorstellung > Komponenten

Bus-Koppler

Beim Bus-Koppler sind Bus-Interface und Power-Modul in ein Gehäuse integriert. Das Bus-Interface bietet Anschluss an ein übergeordnetes Bus-System. Als Kopf-Modul werden über das integrierte Power-Modul zur Spannungsversorgung sowohl das Bus-Interface als auch die Elektronik der angebunden Peripherie-Module versorgt. Die DC 24V Leistungsversorgung für die angebunden Peripherie-Module erfolgt über einen weiteren Anschluss am Power-Modul. Durch Montage von bis zu 64 Peripherie-Modulen am Bus-Koppler werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.

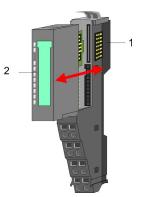


VORSICHT!

Bus-Interface und Power-Modul des Bus-Kopplers dürfen nicht voneinander getrennt werden!

Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

Zeilenanschaltung

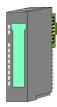


Im System SLIO haben Sie die Möglichkeit bis zu 64 Module in einer Zeile zu stecken. Mit dem Einsatz der Zeilenanschaltung können Sie diese Zeile in mehrere Zeilen aufteilen. Hierbei ist am jeweiligen Zeilenende ein Zeilenanschaltung-Master-Modul zu setzen und die nachfolgende Zeile muss mit einem Zeilenanschaltung-Slave-Modul beginnen. Master und Slave sind über ein spezielles Verbindungskabel miteinander zu verbinden. Auf diese Weise können Sie eine Zeile auf bis zu 5 Zeilen aufteilen. Je Zeilenanschaltung vermindert sich die maximal Anzahl steckbarer Module am System SLIO Bus um 1. Für die Verwendung der Zeilenanschaltung ist keine gesonderte Projektierung erforderlich.

Peripherie-Module

Jedes Peripherie-Modul besteht aus einem Terminal- und einem Elektronik-Modul.

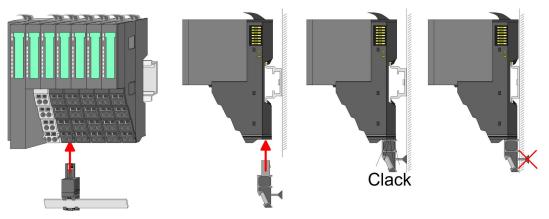
- 1 Terminal-Modul
- 2 Elektronik-Modul


Systemvorstellung > Zubehör

Terminal-Modul

Das *Terminal-Modul* bietet die Aufnahme für das Elektronik-Modul, beinhaltet den Rückwandbus mit Spannungsversorgung für die Elektronik, die Anbindung an die DC 24V Leistungsversorgung und den treppenförmigen Klemmblock für die Verdrahtung. Zusätzlich besitzt das Terminal-Modul ein Verriegelungssystem zur Fixierung auf einer Tragschiene. Mittels dieser Verriegelung können Sie Ihr SLIO-System außerhalb Ihres Schaltschranks aufbauen und später als Gesamtsystem im Schaltschrank montieren.

Elektronik-Modul


Über das *Elektronik-Modul*, welches durch einen sicheren Schiebemechanismus mit dem Terminal-Modul verbunden ist, wird die Funktionalität eines SLIO-Peripherie-Moduls definiert. Im Fehlerfall können Sie das defekte Elektronik-Modul gegen ein funktionsfähiges Modul tauschen. Hierbei bleibt die Verdrahtung bestehen. Auf der Frontseite befinden sich LEDs zur Statusanzeige. Für die einfache Verdrahtung finden Sie bei jedem Elektronik-Modul auf der Front und an der Seite entsprechende Anschlussbilder.

2.2.3 Zubehör

Schirmschienen-Träger

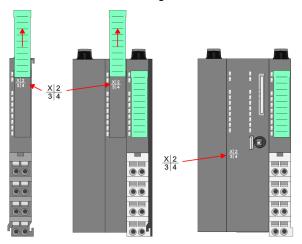
Der Schirmschienen-Träger (Best.-Nr.: 000-0AB00) dient zur Aufnahme von Schirmschienen (10mm x 3mm) für den Anschluss von Kabelschirmen. Schirmschienen-Träger, Schirmschiene und Kabelschirmbefestigungen sind nicht im Lieferumfang enthalten, sondern ausschließlich als Zubehör erhältlich. Der Schirmschienen-Träger wird unterhalb des Klemmblocks in das Terminal-Modul gesteckt. Bei flacher Tragschiene können Sie zur Adaption die Abstandshalter am Schirmschienen-Träger abbrechen.

Systemvorstellung > Hardware-Ausgabestand

Bus-Blende

Bei jedem Kopf-Modul gehört zum Schutz der Bus-Kontakte eine Bus-Blende zum Lieferumfang. Vor der Montage von System SLIO-Modulen ist die Bus-Blende am Kopf-Modul zu entfernen. Zum Schutz der Bus-Kontakte müssen Sie die Bus-Blende immer am äußersten Modul montieren. Die Bus-Blende hat die Best.-Nr. 000-0AA00.

Kodier-Stecker



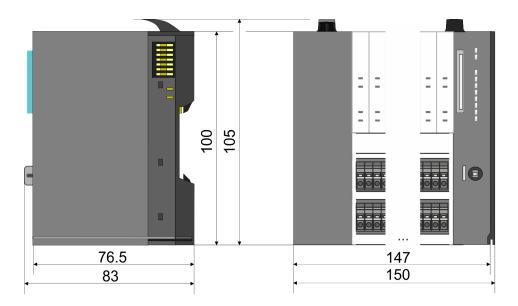
Sie haben die Möglichkeit die Zuordnung von Terminal- und Elektronik-Modul zu fixieren. Hierbei kommen Kodier-Stecker (Best-Nr.: 000-0AC00) von VIPA zum Einsatz. Die Kodier-Stecker bestehen aus einem Kodierstift-Stift und einer Kodier-Buchse, wobei durch Zusammenfügen von Elektronik- und Terminal-Modul der Kodier-Stift am Terminal-Modul und die Kodier-Buchse im Elektronik-Modul verbleiben. Dies gewährleistet, dass nach Austausch des Elektronik-Moduls nur wieder ein Elektronik-Modul mit der gleichen Kodierung gesteckt werden kann.

2.2.4 Hardware-Ausgabestand

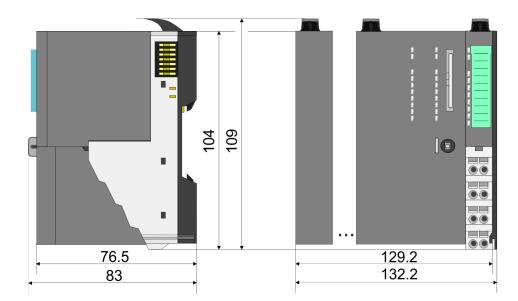
Hardware-Ausgabestand auf der Front

- Auf jedem System SLIO Modul ist der Hardware-Ausgabestand aufgedruckt.
- Da sich ein System SLIO Modul aus Terminal- und Elektronik-Modul zusammensetzt, finden Sie auf diesen jeweils einen Hardware-Ausgabestand aufgedruckt.
- Maßgebend für den Hardware-Ausgabestand eines System SLIO Moduls ist der Hardware-Ausgabestand des Elektronik-Moduls. Dieser befindet sich immer unter dem Beschriftungsstreifen des entsprechenden Elektronik-Moduls.
- Bei Modulen ohne Beschriftungsstreifen, wie z.B. bei CPUs, ist der Hardware-Ausgabestand auf die Front aufgedruckt.

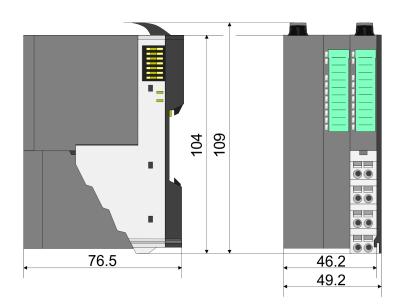
Das Bespiel hier zeigt den Hardware-Ausgabestand 1. Die 1 ist mit "X" gekennzeichnet.


Hardware-Ausgabestand über Webserver

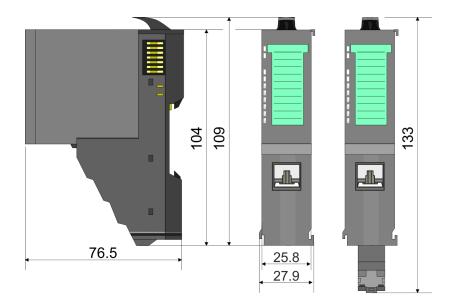
Bei den CPUs und bei manchen Bus-Kopplern können Sie den Hardware-Ausgabestand *"HW Revision"* über den integrierten Webserver ausgeben.


Abmessungen

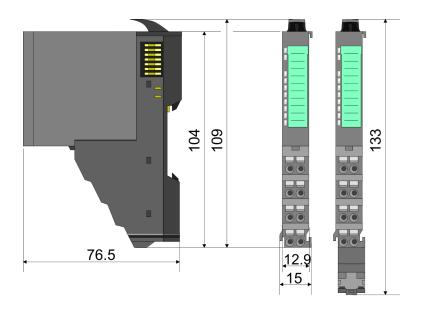
2.3 Abmessungen


Maße CPU 01xC

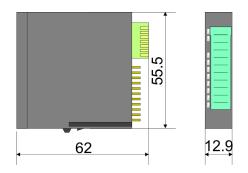
Maße CPU 01x



Maße Bus-Koppler und Zeilenanschaltung Slave



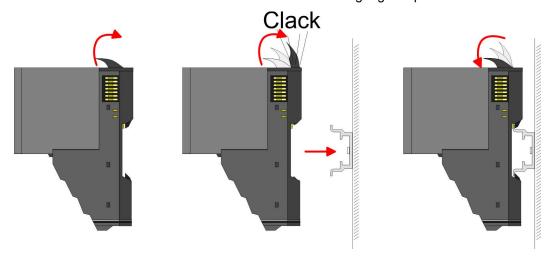
Abmessungen


Maße Zeilenanschaltung Master

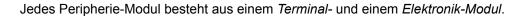
Maße Peripherie-Modul

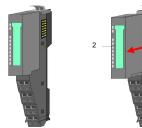
Maße Elektronik-Modul

Maße in mm

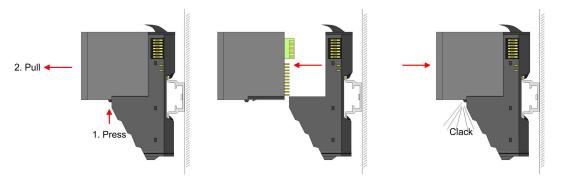

Montage Peripherie-Module

2.4 Montage Peripherie-Module


Voraussetzungen für den UL-konformen Betrieb

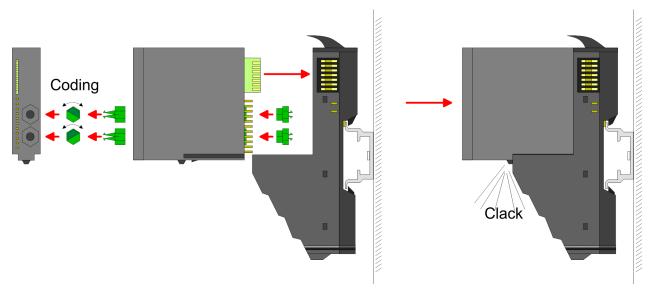

- Verwenden Sie für die Spannungsversorgung ausschließlich SELV/ PELV-Netzteile.
- Das System SLIO darf nur in einem Gehäuse gemäß IEC61010-1
 9.3.2 c) eingebaut und betrieben werden.

Das Modul besitzt einen Verriegelungshebel an der Oberseite. Zur Montage und Demontage ist dieser Hebel nach oben zu drücken, bis er einrastet. Stecken Sie das zu montierende Modul an das zuvor gesteckte Modul und schieben Sie das Modul, geführt durch die Führungsleisten an der Ober- und Unterseite, auf die Tragschiene. Durch Klappen des Verriegelungshebels nach unten wird das Modul auf der Tragschiene fixiert. Sie können entweder die Module einzeln auf der Tragschiene montieren oder als Block. Hierbei ist zu beachten, dass jeder Verriegelungshebel geöffnet ist. Die einzelnen Module werden direkt auf eine Tragschiene montiert. Über die Verbindung mit dem Rückwandbus werden Elektronik- und Leistungsversorgung angebunden. Sie können bis zu 64 Module stecken. Bitte beachten Sie hierbei, dass der Summenstrom der Elektronikversorgung den Maximalwert von 3A nicht überschreitet. Durch Einsatz des Power-Moduls 007-1AB10 können Sie den Strom für die Elektronikversorgung entsprechend erweitern.


Terminal- und Elektronik-Modul

- 1 Terminal-Modul
- 2 Elektronik-Modul

Zum Austausch eines Elektronik-Moduls können Sie das Elektronik-Modul, nach Betätigung der Entriegelung an der Unterseite, nach vorne abziehen. Für die Montage schieben Sie das Elektronik-Modul in die Führungsschiene, bis dieses an der Unterseite hörbar am Terminal-Modul einrastet.



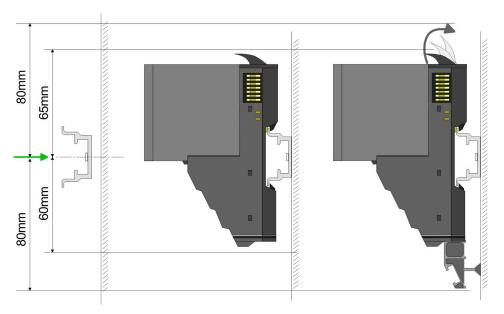
Montage Peripherie-Module

Kodierung

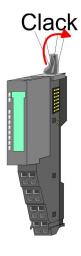
Sie haben die Möglichkeit die Zuordnung von Terminal- und Elektronik-Modul zu fixieren. Hierbei kommen Kodier-Stecker (Best-Nr.: 000-0AC00) von VIPA zum Einsatz. Die Kodier-Stecker bestehen aus einem Kodierstift-Stift und einer Kodier-Buchse, wobei durch Zusammenfügen von Elektronik- und Terminal-Modul der Kodier-Stift am Terminal-Modul und die Kodier-Buchse im Elektronik-Modul verbleiben. Dies gewährleistet, dass nach Austausch des Elektronik-Moduls nur wieder ein Elektronik-Modul mit der gleichen Kodierung gesteckt werden kann.

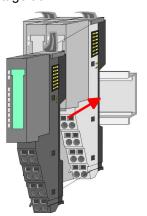
Jedes Elektronik-Modul besitzt an der Rückseite 2 Kodier-Aufnehmer für Kodier-Buchsen. Durch ihre Ausprägung sind 6 unterschiedliche Positionen pro Kodier-Buchse steckbar. Somit haben sie bei Verwendung beider Kodier-Aufnehmer 36 Kombinationsmöglichkeiten für die Kodierung.

- **1.** Stecken Sie gemäß Ihrer Kodierung 2 Kodier-Buchsen in die Aufnehmer am Elektronik-Modul, bis diese einrasten.
- 2. Stecken Sie nun den entsprechenden Kodier-Stift in die Kodier-Buchse.
- **3.** Zur Fixierung der Kodierung führen Sie Elektronik- und Terminal-Modul zusammen, bis diese hörbar einrasten.

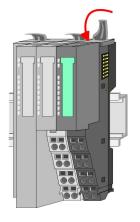

VORSICHT!

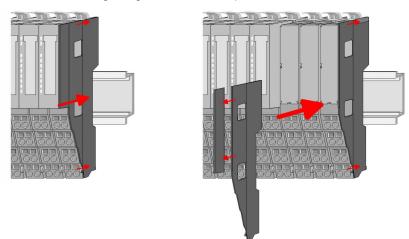
Bitte beachten Sie, dass bei Austausch eines bereits kodierten Elektronik-Moduls dieses immer durch ein Elektronik-Modul mit gleicher Kodierung ersetzt wird.


Auch bei vorhandener Kodierung am Terminal-Modul können Sie ein Elektronik-Modul ohne Kodierung stecken. Die Verantwortung bei der Verwendung von Kodierstiften liegt beim Anwender. VIPA übernimmt keinerlei Haftung für falsch gesteckte Elektronik-Module oder für Schäden, welche aufgrund fehlerhafter Kodierung entstehen!


Montage Peripherie-Module

Montage Peripherie-Modul


- Montieren Sie die Tragschiene! Bitte beachten Sie, dass Sie von der Mitte der Tragschiene nach oben einen Montageabstand von mindestens 80mm und nach unten von 60mm bzw. 80mm bei Verwendung von Schirmschienen-Trägern einhalten.
- 2. Montieren Sie Ihr Kopfmodul wie z.B. CPU oder Feldbus-Koppler.
- **3.** Entfernen Sie vor der Montage der Peripherie-Module die Bus-Blende auf der rechten Seite des Kopf-Moduls, indem Sie diese nach vorn abziehen. Bewahren Sie die Blende für spätere Montage auf.



- **4.** Klappen Sie zur Montage den Verriegelungshebel des Peripherie-Moduls nach oben, bis dieser einrastet.
- 5. Stecken Sie das zu montierende Modul an das zuvor gesteckte Modul und schieben Sie das Modul, geführt durch die Führungsleisten an der Ober- und Unterseite, auf die Tragschiene.

Verdrahtung Peripherie-Module

6. Nlappen Sie den Verriegelungshebel des Peripherie-Moduls wieder nach unten.

7. Nachdem Sie Ihr Gesamt-System montiert haben, müssen Sie zum Schutz der Bus-Kontakte die Bus-Blende am äußersten Modul wieder stecken. Handelt es sich bei dem äußersten Modul um ein Klemmen-Modul, so ist zur Adaption der obere Teil der Bus-Blende abzubrechen.

2.5 Verdrahtung Peripherie-Module

Terminal-Modul Anschlussklemmen

VORSICHT!

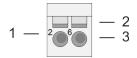
Keine gefährliche Spannungen anschließen!

Sofern dies nicht ausdrücklich bei der entsprechenden Modulbeschreibung vermerkt ist, dürfen Sie an dem entsprechenden Terminal-Modul keine gefährlichen Spannungen anschließen!

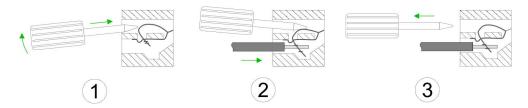
Bei der Verdrahtung von Terminal-Modulen kommen Anschlussklemmen mit Federklemmtechnik zum Einsatz. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen. Im Gegensatz zur Schraubverbindung ist diese Verbindungsart erschütterungssicher.

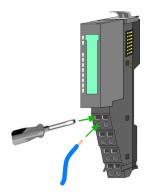
Daten

 U_{max} 240V AC / 30V DC

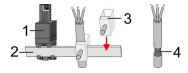

 I_{max} 10A

Querschnitt 0,08 ... 1,5mm² (AWG 28 ... 16)

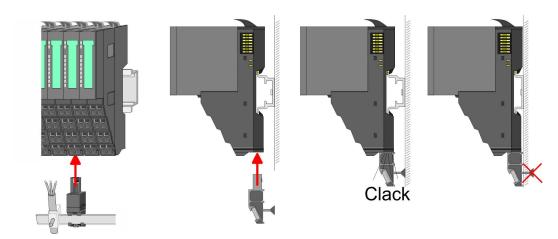

Abisolierlänge 10mm


Verdrahtung Peripherie-Module

Verdrahtung Vorgehensweise


- 1 Pin-Nr. am Steckverbinder
- 2 Entriegelung für Schraubendreher
- 3 Anschlussöffnung für Draht

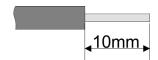
- 2um Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung. Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- **2.** Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen.
- **3.** Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit der Anschlussklemme verbunden.


Schirm auflegen

- 1 Schirmschienen-Träger
- 2 Schirmschiene (10mm x 3mm)
- 3 Schirmanschlussklemme
- 4 Kabelschirm

Zur Schirmauflage ist die Montage von Schirmschienen-Trägern erforderlich. Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen.

- 1. Jedes System SLIO-Modul besitzt an der Unterseite Aufnehmer für Schirmschienen-Träger. Stecken Sie Ihre Schirmschienenträger, bis diese am Modul einrasten. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.
- **2.** Legen Sie Ihre Schirmschiene in den Schirmschienen-Träger ein.

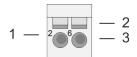

3. Legen Sie ihre Kabel mit dem entsprechend abisolierten Kabelschirm auf und verbinden Sie diese über die Schirmanschlussklemme mit der Schirmschiene.

2.6 Verdrahtung Power-Module

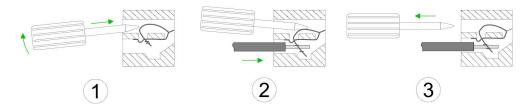
Terminal-Modul Anschlussklemmen

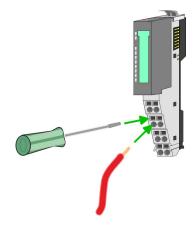
Power-Module sind entweder im Kopf-Modul integriert oder können zwischen die Peripherie-Module gesteckt werden. Bei der Verdrahtung von Power-Modulen kommen Anschlussklemmen mit Federklemmtechnik zum Einsatz. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen. Im Gegensatz zur Schraubverbindung ist diese Verbindungsart erschütterungssicher.

Daten

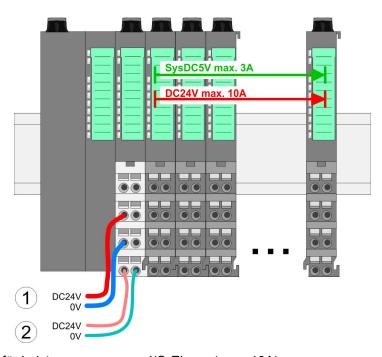


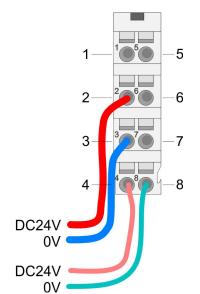
 U_{max} 30V DC I_{max} 10A


Querschnitt 0,08 ... 1,5mm² (AWG 28 ... 16)


Abisolierlänge 10mm

Verdrahtung Vorgehensweise


- Pin-Nr. am Steckverbinder
- Entriegelung für Schraubendreher
- Anschlussöffnung für Draht


- Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung. Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- **2.** Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen.
- Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit der Anschlussklemme verbunden.

Standard-Verdrahtung

- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)(2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene

PM - Power Modul

Für Drähte mit einem Querschnitt von 0.08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1			nicht belegt
2	DC 24V	E	DC 24V für Leistungsversorgung
3	0V	E	GND für Leistungsversorgung
4	Sys DC 24V	E	DC 24V für Elektronikversorgung
5			nicht belegt
6	DC 24V	E	DC 24V für Leistungsversorgung
7	0V	E	GND für Leistungsversorgung
8	Sys 0V	E	GND für Elektronikversorgung

E: Eingang

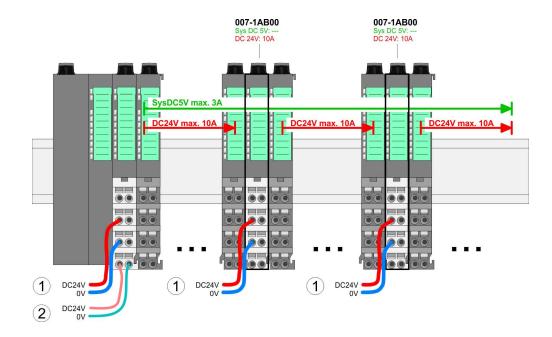
VORSICHT!

Da die Leistungsversorgung keine interne Absicherung besitzt, ist diese extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z!

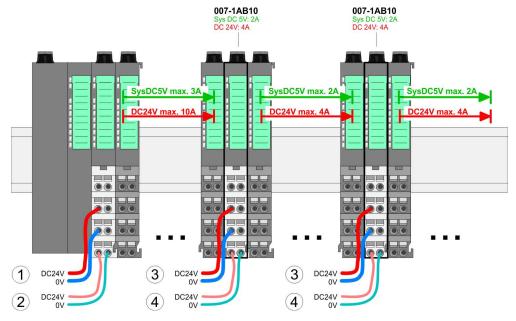
Die Elektronikversorgung ist intern gegen zu hohe Spannung durch eine Sicherung geschützt. Die Sicherung befindet sich innerhalb des Power-Moduls. Wenn die Sicherung ausgelöst hat, muss das Elektronik-Modul getauscht werden!

Absicherung

- Die Leistungsversorgung ist extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z.
- Es wird empfohlen die Elektronikversorgung für Kopf-Modul und I/O-Ebene extern mit einer 2A-Sicherung (flink) bzw. einem Leitungsschutzschalter 2A Charakteristik Z abzusichern.
- Die Elektronikversorgung für die I/O-Ebene des Power-Moduls 007-1AB10 sollte ebenfalls extern mit einer 1A-Sicherung (flink) bzw. einem Leitungsschutzschalter 1A Charakteristik Z abgesichert werden.

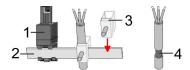

Zustand der Elektronikversorgung über LEDs

Nach PowerON des System SLIO leuchtet an jedem Modul die RUN- bzw. MF-LED, sofern der Summenstrom für die Elektronikversorgung 3A nicht übersteigt. Ist der Summenstrom größer als 3A, werden die LEDs nicht mehr angesteuert. Hier müssen Sie zwischen Ihre Peripherie-Module das Power-Modul mit der Best.-Nr. 007-1AB10 platzieren.


Einsatz von Power-Modulen

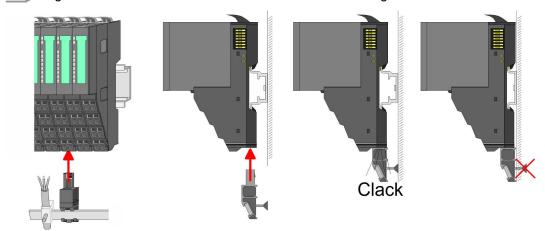
- Das Power-Modul mit der Best.-Nr. 007-1AB00 setzen Sie ein, wenn die 10A für die Leistungsversorgung nicht mehr ausreichen. Sie haben so auch die Möglichkeit, Potenzialgruppen zu bilden.
- Das Power-Modul mit der Best.-Nr. 007-1AB10 setzen Sie ein, wenn die 3A für die Elektronikversorgung am Rückwandbus nicht mehr ausreichen. Zusätzlich erhalten Sie eine neue Potenzialgruppe für die DC 24V Leistungsversorgung mit max. 4A.
- Durch Stecken des Power-Moduls 007-1AB10 können am nachfolgenden Rückwandbus Module gesteckt werden mit einem maximalen Summenstrom von 2A. Danach ist wieder ein Power-Modul zu stecken. Zur Sicherstellung der Spannungsversorgung dürfen die Power-Module beliebig gemischt eingesetzt werden.

Power-Modul 007-1AB00


Power-Modul 007-1AB10

- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)
- (2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene
- (3) DC 24V für Leistungsversorgung I/O-Ebene (max. 4A)
- (4) DC 24V für Elektronikversorgung I/O-Ebene

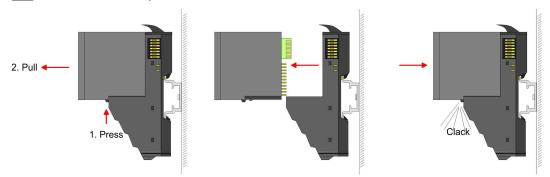
Demontage Peripherie-Module


Schirm auflegen

- 1 Schirmschienen-Träger
- 2 Schirmschiene (10mm x 3mm)
- 3 Schirmanschlussklemme
- 4 Kabelschirm

Zur Schirmauflage ist die Montage von Schirmschienen-Trägern erforderlich. Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen.

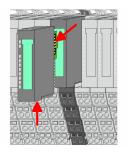
- 1. Jedes System SLIO-Modul besitzt an der Unterseite Aufnehmer für Schirmschienen-Träger. Stecken Sie Ihre Schirmschienenträger, bis diese am Modul einrasten. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.
- 2. Legen Sie Ihre Schirmschiene in den Schirmschienen-Träger ein.


3. Legen Sie ihre Kabel mit dem entsprechend abisolierten Kabelschirm auf und verbinden Sie diese über die Schirmanschlussklemme mit der Schirmschiene.

2.7 Demontage Peripherie-Module

Vorgehensweise

Austausch eines Elektronik-Moduls

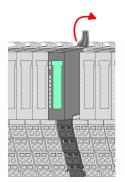

1. Machen Sie Ihr System stromlos.

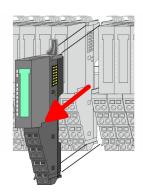
- Zum Austausch eines Elektronik-Moduls können Sie das Elektronik-Modul, nach Betätigung der Entriegelung an der Unterseite, nach vorne abziehen.
- **3.** Für die Montage schieben Sie das neue Elektronik-Modul in die Führungsschiene, bis dieses an der Unterseite am Terminal-Modul einrastet.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

Demontage Peripherie-Module

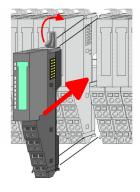
Austausch eines Peripherie-Moduls

1. Machen Sie Ihr System stromlos.

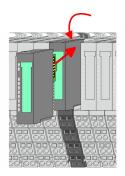

2. Entfernen Sie falls vorhanden die Verdrahtung am Modul.



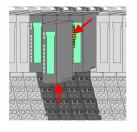
Bei der Demontage und beim Austausch eines (Kopf)-Moduls oder einer Modulgruppe müssen Sie aus montagetechnischen Gründen immer das <u>rechts</u> daneben befindliche Elektronik-Modul entfernen! Nach der Montage kann es wieder gesteckt werden.


Betätigen Sie die Entriegelung an der Unterseite des rechts daneben befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.

4. Klappen Sie den Verriegelungshebel des zu tauschenden Moduls nach oben.



- **5.** Ziehen Sie das Modul nach vorne ab.
- **6.** Zur Montage klappen Sie den Verriegelungshebel des zu montierenden Moduls nach oben.

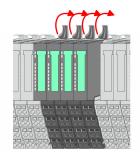

- Stecken Sie das zu montierende Modul in die Lücke zwischen die beiden Module und schieben Sie das Modul, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.
- **8.** Klappen Sie den Verriegelungshebel wieder nach unten.

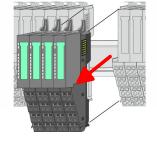
Demontage Peripherie-Module

- 9. Stecken Sie wieder das zuvor entnommene Elektronik-Modul.
- 10. Verdrahten Sie Ihr Modul.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

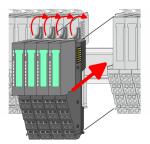
Austausch einer Modulgruppe

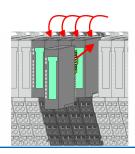
- 1. Machen Sie Ihr System stromlos.
- 2. Entfernen Sie falls vorhanden die Verdrahtung an der Modulgruppe.




Bei der Demontage und beim Austausch eines (Kopf)-Moduls oder einer Modulgruppe müssen Sie aus montagetechnischen Gründen immer das <u>rechts</u> daneben befindliche Elektronik-Modul entfernen! Nach der Montage kann es wieder gesteckt werden.

Betätigen Sie die Entriegelung an der Unterseite des rechts neben der Modulgruppe befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.


4. Klappen Sie alle Verriegelungshebel der zu tauschenden Modulgruppe nach oben.


- **5.** Diehen Sie die Modulgruppe nach vorne ab.
- **6.** Zur Montage klappen Sie alle Verriegelungshebel der zu montierenden Modulgruppe nach oben.

- 7. Stecken Sie die zu montierende Modulgruppe in die Lücke zwischen die beiden Module und schieben Sie die Modulgruppe, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.
- **8.** Klappen Sie alle Verriegelungshebel wieder nach unten.

- **9.** Stecken Sie wieder das zuvor entnommene Elektronik-Modul.
- **10.** Verdrahten Sie Ihre Modulgruppe.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

Hilfe zur Fehlersuche - LEDs

2.8 Hilfe zur Fehlersuche - LEDs

Allgemein

Jedes Modul besitzt auf der Frontseite die LEDs RUN und MF. Mittels dieser LEDs können Sie Fehler in Ihrem System bzw. fehlerhafte Module ermitteln.

In den nachfolgenden Abbildungen werden blinkende LEDs mit ☼ gekennzeichnet.

Summenstrom der Elektronik-Versorgung überschritten

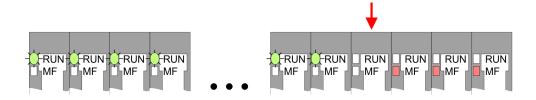
Verhalten: Nach dem Einschalten bleibt an jedem Modul die RUN-LED aus und es leuchtet sporadisch die MF-LED.

Ursache: Der maximale Strom für die Elektronikversorgung ist überschritten.

Abhilfe: Platzieren Sie immer, sobald der Summenstrom für die Elektronikversorgung den maximalen Strom übersteigt, das Power-Modul 007-1AB10.

Kap. 2.6 "Verdrahtung Power-Module" Seite 23

Konfigurationsfehler



Verhalten: Nach dem Einschalten blinkt an einem Modul bzw. an mehreren Modulen die MF-LED. Die RUN-LED bleibt ausgeschaltet.

Ursache: An dieser Stelle ist ein Modul gesteckt, welches nicht dem aktuell konfigurierten Modul entspricht.

Abhilfe: Stimmen Sie Konfiguration und Hardware-Aufbau aufeinander ab.

Modul-Ausfall

Verhalten: Nach dem Einschalten blinken alle RUN-LEDs bis zum fehlerhaften Modul. Bei allen nachfolgenden Modulen leuchtet die MF LED und die RUN-LED ist aus.

Ursache: Das Modul rechts der blinkenden Module ist defekt.

Abhilfe: Ersetzen Sie das defekte Modul.

Aufbaurichtlinien

2.9 Aufbaurichtlinien

Allgemeines

Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau eines SPS-Systems. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV) sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist.

Was bedeutet EMV?

Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektrischen Gerätes, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren, ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen.

Die Komponenten von VIPA sind für den Einsatz in Industrieumgebungen entwickelt und erfüllen hohe Anforderungen an die EMV. Trotzdem sollten Sie vor der Installation der Komponenten eine EMV-Planung durchführen und mögliche Störquellen in die Betrachtung einbeziehen.

Mögliche Störeinwirkungen

Elektromagnetische Störungen können sich auf unterschiedlichen Pfaden in Ihre Steuerung einkoppeln:

- Elektromagnetische Felder (HF-Einkopplung)
- Magnetische Felder mit energietechnischer Frequenz
- Bus-System
- Stromversorgung
- Schutzleiter

Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschiedliche Kopplungsmechanismen in Ihre Steuerung.

Man unterscheidet:

- galvanische Kopplung
- kapazitive Kopplung
- induktive Kopplung
- Strahlungskopplung

Grundregeln zur Sicherstellung der EMV

Häufig genügt zur Sicherstellung der EMV das Einhalten einiger elementarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln.

- Achten Sie bei der Montage Ihrer Komponenten auf eine gut ausgeführte flächenhafte Massung der inaktiven Metallteile.
 - Stellen Sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutzleitersystem her.
 - Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm.
 - Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet.
- Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung.
 - Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversorgungs-, Signal- und Datenleitungen).
 - Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln.
 - Führen Sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche).

Aufbaurichtlinien

- Achten Sie auf die einwandfreie Befestigung der Leitungsschirme.
 - Datenleitungen sind geschirmt zu verlegen.
 - Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
 - Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
 - Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
 - Verwenden Sie für geschirmte Datenleitungen metallische oder metallisierte Steckergehäuse.
- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
 - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
 - Beachten Sie, dass bei Einsatz von Leuchtstofflampen sich diese negativ auf Signalleitungen auswirken können.
- Schaffen Sie ein einheitliches Bezugspotenzial und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
 - Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsmaßnahme.
 - Verbinden Sie Anlagenteile und Schränke mit Ihrer SPS sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
 - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.

Schirmung von Leitungen

Elektrische, magnetische oder elektromagnetische Störfelder werden durch eine Schirmung geschwächt; man spricht hier von einer Dämpfung. Über die mit dem Gehäuse leitend verbundene Schirmschiene werden Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störquelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich. Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:
 - die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann.
 - Analogsignale (einige mV bzw. μA) übertragen werden.
 - Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen für serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergehäuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/Schutzleiterschiene aufzulegen.
- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zu Ihrer SPS weiter, legen Sie ihn dort jedoch nicht erneut auf!

Allgemeine Daten

VORSICHT!

Bitte bei der Montage beachten!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen.

Abhilfe: Potenzialausgleichsleitung.

2.10 Allgemeine Daten

Konformität und Approbation									
Konformität									
CE	2014/35/EU	Niederspannungsrichtlinie							
	2014/30/EU	EMV-Richtlinie							
Approbation									
UL	-	Siehe Technische Daten							
Sonstiges									
RoHS	2011/65/EU	Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten							

Personenschutz und Geräteschutz								
Schutzart	-	IP20						
Potenzialtrennung								
Zum Feldbus	-	Galvanisch entkoppelt						
Zur Prozessebene	-	Galvanisch entkoppelt						
Isolationsfestigkeit	-	-						
Isolationsspannung gegen Bezugserde								
Eingänge / Ausgänge	-	AC / DC 50V, bei Prüfspannung AC 500V						
Schutzmaßnahmen	-	gegen Kurzschluss						

Umgebungsbedingungen gemäß EN 61131-2										
Klimatisch										
Lagerung /Transport	EN 60068-2-14	-25+70°C								
Betrieb										
Horizontaler Einbau hängend	EN 61131-2	0+60°C								
Horizontaler Einbau liegend	EN 61131-2	0+55°C								
Vertikaler Einbau	EN 61131-2	0+50°C								
Luftfeuchtigkeit	EN 60068-2-30	RH1 (ohne Betauung, relative Feuchte 10 95%)								
Verschmutzung	EN 61131-2	Verschmutzungsgrad 2								

Allgemeine Daten

Umgebungsbedingungen gemäß EN 61131-2									
Aufstellhöhe max 2000m									
Mechanisch									
Schwingung	EN 60068-2-6	1g, 9Hz 150Hz							
Schock	EN 60068-2-27	15g, 11ms							

Montagebedingungen								
Einbauort	-	Im Schaltschrank						
Einbaulage	-	Horizontal und vertikal						

EMV Norm			Bemerkungen				
Störaussendung EN 61000-6-4			Class A (Industriebereich)				
Störfestigkeit	EN 61000-6-2		Industriebereich				
Zone B		EN 61000-4-2	ESD				
			8kV bei Luftentladung (Schärfegrad 3),				
			4kV bei Kontaktentladung (Schärfegrad 2)				
		EN 61000-4-3	HF-Einstrahlung (Gehäuse)				
			80MHz 1000MHz, 10V/m, 80% AM (1kHz)				
			1,4GHz 2,0GHz, 3V/m, 80% AM (1kHz)				
			2GHz 2,7GHz, 1V/m, 80% AM (1kHz)				
		EN 61000-4-6	HF-Leitungsgeführt				
			150kHz 80MHz, 10V, 80% AM (1kHz)				
		EN 61000-4-4	Burst, Schärfegrad 3				
		EN 61000-4-5	Surge, Schärfegrad 3 *				

^{*)} Aufgrund der energiereichen Einzelimpulse ist bei Surge eine angemessene externe Beschaltung mit Blitzschutzelementen wie z.B. Blitzstromableitern und Überspannungsableitern erforderlich.

VIPA System SLIO Analoge Eingabe

Allgemeines

3 Analoge Eingabe

3.1 Allgemeines

Leitungen für Analogsignale

Für die Analogsignale müssen Sie geschirmte Leitungen verwenden. Hierdurch verringern Sie die Störbeeinflussung. Den Schirm der Analogleitungen sollten Sie an beiden Leitungsenden erden. Wenn Potenzialunterschiede zwischen den Leitungsenden bestehen, kann ein Potenzialausgleichsstrom fließen, der die Analogsignale stören könnte. In diesem Fall sollten Sie den Schirm nur an einem Leitungsende erden.

Anschließen von Messwertgebern

Je nach Modul können Sie folgende Messwertgeber an die analogen Eingabe-Module anschließen:

- Stromgeber
- Spannungsgeber
- Widerstandsgeber
- Temperaturgeber

Bitte achten Sie beim Anschluss der Messwertgeber immer auf richtige Polarität! Schließen Sie nicht benutzte Eingänge kurz, indem Sie den positiven Anschluss und die Kanal-Masse des jeweiligen Kanals miteinander verbinden.

Parametrierung

Die Parametrierung über CPU, PROFIBUS und PROFINET erfolgt mittels Datensätze (DS). Die entsprechende Datensatz-Nr. finden Sie bei der jeweiligen Modulbeschreibung. Hier sind auch die Indizes (IX) bzw. Subindizes (SX) für CANopen bzw. für EtherCAT aufgeführt.

Diagnosefunktion

Die Module sind diagnosefähig. Folgende Fehlermeldungen können Sie über eine Diagnose abrufen:

- Parametrierfehler
- Messbereichsüber- bzw. -unterschreitung
- Drahtbruch

Abwechselndes Blinken der Kanal-Fehler LEDs

Das abwechselnde Blinken der Kanal-Fehler-LEDs von Kanal 0 und 1 zeigt einen Watchdog-Fehler aufgrund einer Systemüberlastung an. Starten Sie mit einem Power-Cycle Ihr System neu. Sollte der Fehler erneut auftreten, überprüfen Sie Konfiguration und Anschaltung und passen Sie diese ggf. an. Sollte der Fehler weiterhin bestehen kontaktieren Sie bitte unseren Support.

Analoge Eingabe VIPA System SLIO

Messbereiche und Funktionsnummern

3.2 Analogwert

Darstellung von Analogwerten

Analogwerte können ausschließlich in binärer Form verarbeitet werden. Hierzu wandelt das Analogeingabemodul jedes Prozesssignal in eine digitale Form um und reicht dieses als Wort weiter. Die Analogwerte werden als Festpunktzahl im Zweierkomplement dargestellt.

Auflösung	Analogwert															
	High-Byte (Byte 0)									Low-Byte (Byte 1)						
Bitnummer	15	14 13 12 11 10 9 8 7 6 5 4								4	3	2	1	0		
Wertigkeit	VZ	214	2 ¹³	212	211	210	2 ⁹	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	20
12Bit	VZ	VZ Messwert 0 0										0				
15Bit	VZ	VZ Messwert														

Auflösung

Bei einer Auflösung von 12Bit plus Vorzeichen-Bit werden die nicht verwendeten niederwertigen Stellen (3 Bit) mit "0" beschrieben.

Vorzeichen-Bit (VZ)

Für das Vorzeichen-Bit gilt:

Bit 15 = "0": → positiver WertBit 15 = "1": → negativer Wert

Verhalten bei Fehler

Sobald ein Messwert den Übersteuerungsbereich überschreitet bzw. den Untersteuerungsbereich unterschreitet wird folgender Wert ausgegeben:

- Messwert > Übersteuerungsbereich: 32767 (7FFFh)
- Messwert < Untersteuerungsbereich:-32768 (8000h)

Bei Parametrierfehler wird der Messwert 32767 (7FFFh) ausgegeben.

3.3 Messbereiche und Funktionsnummern

Allgemeines

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom jeweiligen Analog-Modul unterstützt werden.

Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

Messbereiche und Funktionsnummern

Spannung

-80 ... 80mV

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
-80 80mV	94,07mV	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	80mV	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{80}$
(11h)	0V	0	0000h		
	-80mV	-27648	9400h		$U = D \cdot \frac{80}{27648}$
	-94,07mV	-32512	8100h	Untersteuerung	2/648
-80 80mV	100mV	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{U}{80}$
Siemens S5-Format	80mV	16384	4000h	Nennbereich	$D = 16384 \cdot {80}$
(21h)	0V	0	0000h		
	-80mV	-16384	C000h		$U = D \cdot \frac{80}{16384}$
	-100mV	-20480	B000h	Untersteuerung	16384

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	D = 27649
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(10h)	5V	13824	3600h		
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-1,76V	-4864	ED00h	Untersteuerung	27046
0 10V	12,5V	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{U}{10}$
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 10384 \cdot \frac{10}{10}$
(20h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$
	-2V	-3277	F333h	Untersteuerung	16384

Messbereiche und Funktionsnummern

±10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
±10V	11,76V	32511	7EFFh	Übersteuerung	D = 27649
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(12h)	5V	13824	3600h		10
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-5V	-13824	CA00h		2/048
	-10V	-27648	9400h		
	-11,76V	-32512	8100h	Untersteuerung	
±10V	12,5V	20480	5000h	Übersteuerung	D 16204 U
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$
(22h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$
	-5V	-8192	E000h		16384
	-10V	-16384	C000h		
	-12,5V	-20480	B000h	Untersteuerung	

Messbereiche und Funktionsnummern

Strom

0(4) ... 20mA

Messbereich	Strom	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(I)	(D)			
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	D 27649 I
Siemens	20mA	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{I}{20}$
S7-Format	10mA	13824	3600h		
(31h)	0mA	0	0000h		$I = D \cdot \frac{20}{27648}$
	-3,52mA	-4864	ED00h	Untersteuerung	27648
0 20mA	25,00mA	20480	5000h	Übersteuerung	D 16204 I
Siemens	20mA	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{1}{20}$
S5-Format	10mA	8192	2000h		
(41h)	0mA	0	0000h		$I = D \cdot \frac{20}{16384}$
	-4,00mA	-3277	F333h	Untersteuerung	16384
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{I-4}{16}$
Siemens	20mA	27648	6C00h	Nennbereich	16
S7-Format	12mA	13824	3600h		$I = D \cdot \frac{16}{27648} + 4$
(30h)	4mA	0	0000h		$T = D \cdot \frac{1}{27648} + 4$
	1,19mA	-4864	ED00h	Untersteuerung	
4 20mA	24,00mA	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{I-4}{16}$
Siemens	20mA	16384	4000h	Nennbereich	16
S5-Format	12mA	8192	2000h		16
(40h)	4mA	0	0000h		$I = D \cdot \frac{16}{16384} + 4$
	0,8mA	-3277	F333h	Untersteuerung	

0 ... 20mA / 4KM-Format

Messbereich	Strom	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(1)	(D)			
0 20mA	20,457mA	4095	0FFFh	Übersteuerung	D 1000 I
4KM-Format	20mA	4000	0FA0h	Nennbereich	$D = 4000 \cdot \frac{1}{20}$
(3Fh)	10mA	2000	07D0h		
	0mA	0	0000h		$I = D \cdot \frac{20}{}$
				Untersteuerung	4000

Messbereiche und Funktionsnummern

Widerstand

Messbereich	Messwert	Signalbereich	Bereich
(FktNr.)			
2-Leiter: PT100	+1000°C	+10000	Übersteuerung
(50h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
2-Leiter: PT1000	+1000°C	+10000	Übersteuerung
(51h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
2-Leiter: NI100	+295°C	+2950	Übersteuerung
(52h)	-60 +250°C	-600 +2500	Nennbereich
	-105°C	-1050	Untersteuerung
2-Leiter: NI1000	+295°C	+2950	Übersteuerung
(53h)	-60 +250°C	-600 +2500	Nennbereich
	-105°C	-1050	Untersteuerung
3-Leiter: PT100	+1000°C	+10000	Übersteuerung
(58h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
3-Leiter: PT1000	+1000°C	+10000	Übersteuerung
(59h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
3-Leiter: NI100	+295°C	+2950	Übersteuerung
(5Ah)	-60 +250°C	-600 +2500	Nennbereich
	-105°C	-1050	Untersteuerung
3-Leiter: NI1000	+295°C	+2950	Übersteuerung
(5Bh)	-60 +250°C	-600 +2500	Nennbereich
	-105°C	-1050	Untersteuerung
4-Leiter: PT100	+1000°C	+10000	Übersteuerung
(60h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
4-Leiter: PT1000	+1000°C	+10000	Übersteuerung
(61h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
4-Leiter: NI100	+295°C	+2950	Übersteuerung
(62h)	-60 +250°C	-600 +2500	Nennbereich
	-105°C	-1050	Untersteuerung
4-Leiter: NI1000	+295°C	+2950	Übersteuerung

Messbereiche und Funktionsnummern

Messbereich	Messwert	Signalbereich	Bereich
(FktNr.)			
(63h)	-60 +250°C	-600 +2500	Nennbereich
	-105°C	-1050	Untersteuerung
2-Leiter: 0 60Ω			Übersteuerung
(70h)	$0 \dots 60\Omega$	0 32767	Nennbereich
			Untersteuerung
2-Leiter: 0 600Ω			Übersteuerung
(71h)	$0 \dots 600\Omega$	0 32767	Nennbereich
			Untersteuerung
2-Leiter: 0 3000Ω			Übersteuerung
(72h)	$0 \dots 3000\Omega$	0 32767	Nennbereich
			Untersteuerung
3-Leiter: 0 60Ω			Übersteuerung
(78h)	0 60Ω	0 32767	Nennbereich
			Untersteuerung
3-Leiter: 0 600Ω			Übersteuerung
(79h)	$0 \dots 600\Omega$	0 32767	Nennbereich
			Untersteuerung
3-Leiter: 0 3000Ω			Übersteuerung
(7Ah)	0 3000Ω	0 32767	Nennbereich
			Untersteuerung
4-Leiter: 0 60Ω			Übersteuerung
(80h)	$0 \dots 60\Omega$	0 32767	Nennbereich
			Untersteuerung
4-Leiter: 0 600Ω			Übersteuerung
(81h)	$0 \dots 600\Omega$	0 32767	Nennbereich
			Untersteuerung
4-Leiter: 0 3000Ω			Übersteuerung
(82h)	$0 \dots 3000\Omega$	0 32767	Nennbereich
			Untersteuerung
2-Leiter: 0 60Ω			Übersteuerung
(90h)	$0 \dots 60\Omega$	0 6000	Nennbereich
			Untersteuerung
2-Leiter: 0 600Ω			Übersteuerung
(91h)	0 600Ω	0 6000	Nennbereich
			Untersteuerung

Messbereiche und Funktionsnummern

Messbereich	Messwert	Signalbereich	Bereich
(FktNr.)			
2-Leiter: 0 3000Ω			Übersteuerung
(92h)	$0 \dots 3000\Omega$	0 30000	Nennbereich
			Untersteuerung
3-Leiter: 0 60Ω			Übersteuerung
(98h)	$0 \dots 60\Omega$	0 6000	Nennbereich
			Untersteuerung
3-Leiter: 0 600Ω			Übersteuerung
(99h)	$0 \dots 600\Omega$	0 6000	Nennbereich
			Untersteuerung
3-Leiter: 0 3000 Ω			Übersteuerung
(9Ah)	$0 \dots 3000\Omega$	0 30000	Nennbereich
			Untersteuerung
4-Leiter: 0 60Ω			Übersteuerung
(A0h)	0 60Ω	0 6000	Nennbereich
			Untersteuerung
4-Leiter: 0 600Ω			Übersteuerung
(A1h)	$0 \dots 600\Omega$	0 6000	Nennbereich
			Untersteuerung
4-Leiter: 0 3000Ω			Übersteuerung
(A2h)	$0 \dots 3000\Omega$	0 30000	Nennbereich
			Untersteuerung
2-Leiter: 0 60Ω	$70,55\Omega$	32511	Übersteuerung
(D0h)	0 60Ω	0 27648	Nennbereich
			Untersteuerung
2-Leiter: 0 600Ω	$705,5\Omega$	32511	Übersteuerung
(D1h)	$0 \dots 600\Omega$	0 27648	Nennbereich
			Untersteuerung
2-Leiter: 0 3000Ω	3528Ω	32511	Übersteuerung
(D2h)	$0 \dots 3000\Omega$	0 27648	Nennbereich
			Untersteuerung
3-Leiter: 0 60Ω	$70,55\Omega$	32511	Übersteuerung
(D8h)	0 60Ω	0 27648	Nennbereich
			Untersteuerung
3-Leiter: 0 600Ω	705,5Ω	32511	Übersteuerung
(D9h)	0 600Ω	0 27648	Nennbereich

Messbereiche und Funktionsnummern

Messbereich	Messwert	Signalbereich	Bereich
(FktNr.)			
			Untersteuerung
3-Leiter: 0 3000Ω	3528Ω	32511	Übersteuerung
(DAh)	$0 \dots 3000\Omega$	0 27648	Nennbereich
			Untersteuerung
4-Leiter: $0 \dots 60\Omega$	$70,55\Omega$	32511	Übersteuerung
(E0h)	0 60Ω	0 27648	Nennbereich
			Untersteuerung
4-Leiter: 0 600Ω	705,5Ω	32511	Übersteuerung
(E1h)	0 600Ω	0 27648	Nennbereich
			Untersteuerung
4-Leiter: 0 3000Ω	3528Ω	32511	Übersteuerung
(E2h)	$0 \dots 3000\Omega$	0 27648	Nennbereich
			Untersteuerung

Temperatur

Messbereich	Messwert in °C	Messwert in °F	Messwert in K	Bereich
(FktNr.)	(0,1°C/Digit)	(0,1°F/Digit)	(0,1K/Digit)	
Typ J:	+14500	26420	17232	Übersteuerung
[Fe-Cu-Ni IEC]	-2100 +12000	-3460 21920	632 14732	Nennbereich
-210 +1200°C -346 2192°F 63,2 1473,2K (B0h: ext. Komp. 0°C) (C0h: int. Komp. 0°C)				Untersteuerung
Typ K:	+16220	29516	18952	Übersteuerung
[Ni-Cr-Ni]	-2700 +13720	-4540 25016	0 16452	Nennbereich
-270 +1372°C -454 2501,6°F 0 1645,2K (B1h: ext. Komp. 0°C) (C1h: int. Komp. 0°C)				Untersteuerung
Typ N:	+15500	28220	18232	Übersteuerung
[Ni-Cr-Si] -270 +1300°C -454 2372°F	-2700 + 13000	-4540 23720	0 15732	Nennbereich

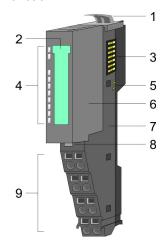
Messbereiche und Funktionsnummern

Messbereich	Messwert in °C	Messwert in °F	Messwert in K	Bereich
(FktNr.)	(0,1°C/Digit)	(0,1°F/Digit)	(0,1K/Digit)	
0 1573,2K (B2h: ext. Komp. 0°C) (C2h: int. Komp. 0°C)				Untersteuerung
Typ R:	+20190	32766	22922	Übersteuerung
[PtRh-Pt]	-500 +17690	-580 32162	2232 20422	Nennbereich
-50 +1769°C -58 3216,2°F 223,2 2042,2K (B3h: ext. Komp. 0°C) (C3h: int. Komp. 0°C)	-1700	-2740	1032	Untersteuerung
Typ S:	+20190	32766	22922	Übersteuerung
[PtRh-Pt]	-500 +17690	-580 32162	2232 20422	Nennbereich
-50 +1769°C -58 3216,2°F 223,2 2042,2K (B4h: ext. Komp. 0°C) (C4h: int. Komp. 0°C)	-1700	-2740	1032	Untersteuerung
Тур Т:	+5400	10040	8132	Übersteuerung
[Cu-Cu-Ni]	-2700 +4000	-4540 7520	32 6732	Nennbereich
-270 +400°C -454 752°F 3,2 673,2K (B5h: ext. Komp. 0°C) (C5h: int. Komp. 0°C)				Untersteuerung
Тур В:	+20700	32766	23432	Übersteuerung
[PtRh-PtRh]	0 +18200	320 27865	2732 20932	Nennbereich
0 +1820°C 32 2786,5°F 273,2 2093,2K (B6h: ext. Komp. 0°C) (C6h: int. Komp. 0°C)	-1200	-1840	1532	Untersteuerung
Typ C:	+25000	32766	23432	Übersteuerung
[WRe5-WRe26]	0 +23150	320 27865	2732 20932	Nennbereich
0 +2315°C 32 2786,5°F 273,2 2093,2K (B7h: ext. Komp. 0°C) (C7h: int. Komp. 0°C)	-1200	-1840	1532	Untersteuerung

Messbereiche und Funktionsnummern

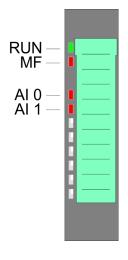
Messbereich	Messwert in °C	Messwert in °F	Messwert in K	Bereich
(FktNr.)	(0,1°C/Digit)	(0,1°F/Digit)	(0,1K/Digit)	
Typ E:	+12000	21920	14732	Übersteuerung
[Ni-Cr - Cu-Ni]	-2700 +10000	-4540 18320	0 12732	Nennbereich
-270 +1000°C -454 1832°F 0 1273,2K (B8h: ext. Komp. 0°C) (C8h: int. Komp. 0°C)				Untersteuerung
Typ L:	+11500	21020	14232	Übersteuerung
[Fe-Cu-Ni]	-2000 +9000	-3280 16520	732 11732	Nennbereich
-200 +900°C -328 1652°F 73,2 1173,2K (B9h: ext. Komp. 0°C) (C9h: int. Komp. 0°C)				Untersteuerung

031-1BB10 - AI 2x12Bit 0(4)...20mA - ISO


3.4 031-1BB10 - AI 2x12Bit 0(4)...20mA - ISO

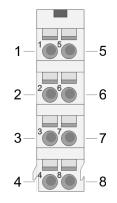
Eigenschaften

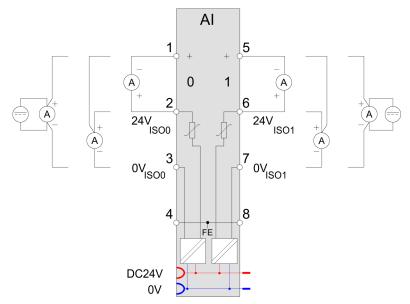
Das Elektronikmodul besitzt 2 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Geberversorgungen zueinander und mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.


- 2 galvanisch getrennte analoge Eingänge
- Integrierte Geberversorgung pro Kanal max. 35mA (kurzschlussfest bis 39mA)
- Geeignet für Geber mit 0 ... 20mA; 4 ... 20mA
- Alarm- und Diagnosefunktion
- 12Bit Auflösung

Aufbau

- Verriegelungshebel Terminal-Modul 1
- 2 Beschriftungsstreifen
- Rückwandbus
- LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- Verriegelungshebel Elektronik-Modul 8
- Anschlussklemmen


Statusanzeige


RUN grün	MF rot	Al x ■ rot	Beschreibung
_		V	Bus-Kommunikation ist OK
		X	Modul-Status ist OK
		X	Bus-Kommunikation ist OK
		^	Modul-Status meldet Fehler
		V	Bus-Kommunikation nicht möglich
		X	Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			 Signal liegt außerhalb des Messbereichs Fehler in der Parametrierung Überlast/Kurzschluss der DC 24V_ISO
nicht relevan	t: X		

031-1BB10 - AI 2x12Bit 0(4)...20mA - ISO

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	24V_ISO_0	Α	DC 24V Geberversorgung Kanal 0
3	0V_ISO_0	Α	Masse für Kanal 0
4	FE		Schirm
5	Al 1	E	+ Kanal 1
6	24V_ISO_1	Α	DC 24V Geberversorgung Kanal 1
7	0V_ISO_1	Α	Masse für Kanal 1
8	FE		Schirm

E: Eingang, A: Ausgang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

031-1BB10 - Al 2x12Bit 0(4)...20mA - ISO > Technische Daten

3.4.1 Technische Daten

Artikelnr.	031-1BB10
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0411 1543
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	50 mA
Verlustleistung	0,7 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Spannungseingänge	
min. Eingangswiderstand im Spannungsbereich	-
Eingangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	
Grundfehlergrenze Spannungsbereiche mit SFU	
Zerstörgrenze Spannung	
Stromeingänge	✓
max. Eingangswiderstand im Strombereich	60 Ω
Eingangsstrombereiche	+4 mA +20 mA
	0 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-0,5%
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	+/-0,3%
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	max. 24V
Zerstörgrenze Stromeingänge (Strom)	max. 40mA
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-

031-1BB10 - Al 2x12Bit 0(4)...20mA - ISO > Technische Daten

Artikelnr.	031-1BB10
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	12
Messprinzip	sukzessive Approximation
Grundwandlungszeit	1,15 ms alle Kanäle
Störspannungsunterdrückung für Frequenz	>80dB (UCM<20V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja, parametrierbar
Prozessalarm	ja, parametrierbar
Diagnosealarm	ja, parametrierbar
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	✓

031-1BB10 - Al 2x12Bit 0(4)...20mA - ISO > Technische Daten

Artikelnr.	031-1BB10
zwischen den Kanälen in Gruppen zu	1
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Technische Daten Geberversorgung	
Anzahl Ausgänge	2
Ausgangsspannung (typ)	+24 V (-1,5 V)
Ausgangsspannung (Nennwert)	35 mA
Kurzschlussschutz	ja, elektronisch
Potenzialbindung	zugehöriger Analogeingang
Datengrößen	
Eingangsbytes	4
Ausgangsbytes	0
Parameterbytes	20
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	65 g
Gewicht inklusive Zubehör	65 g
Gewicht Brutto	79 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1BB10 - AI 2x12Bit 0(4)...20mA - ISO > Parametrierdaten

3.4.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose*	00h	00h	3100h	01h
SHORT_EN	1	Überwachung Geberspannung*	00h	00h	3101h	02h
LIMIT_EN	1	Grenzwertüberwachung*	00h	00h	3102h	03h
RES	1	reserviert*	00h	00h	3103h	04h
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3104h	05h
CH0FO	1	Funktionsoption Kanal 0	00h	80h	3105h	06h
CH0UL	2	Oberer Grenzwert Kanal 0	7FFFh	80h	3106h 3107h	07h
CH0LL	2	Unterer Grenzwert Kanal 0	8000h	80h	3108h 3109h	08h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	310Ah	09h
CH1FO	1	Funktionsoption Kanal 1	00h	81h	310Bh	0Ah
CH1UL	2	Oberer Grenzwert Kanal 1	7FFFh	81h	310Ch 310Dh	0Bh
CH1LL	2	Unterer Grenzwert Kanal 1	8000h	81h	310Eh 310Fh	0Ch

^{*)} Diesen Datensatz dürfen Sie ausschließlich im STOP-Zustand übertragen.

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm00h: sperren40h: freigeben

■ Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

SHORT_EN Überw. Geberspg.

Byte	Bit 7 0
0	 Bit 0: Geber-/Versorgungsüberwachung Kanal 0 (1: an) Bit 1: Geber-/Versorgungsüberwachung Kanal 1 (1: an) Bit 7 2: reserviert

031-1BB10 - AI 2x12Bit 0(4)...20mA - ISO > Parametrierdaten

LIMIT_EN Grenzwert-überwachung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberwachung Kanal 0 (1: an) Bit 1: Grenzwertüberwachung Kanal 1 (1: an) Bit 7 2: reserviert

CHxFN Funktionsnummer Kanal x

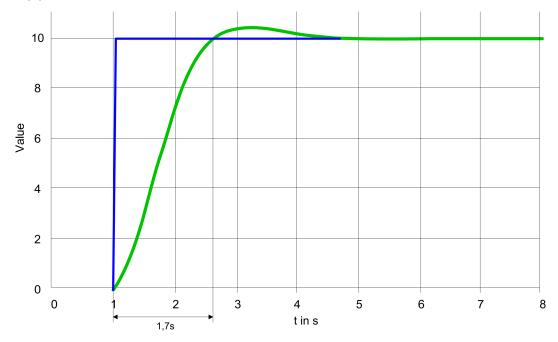
Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert und die jeweilige Geberversorgung abgeschaltet. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

0(4) ... 20mA

Messbereich (FktNr.)	Strom (I)	Dezimal (D)	Hex	Bereich	Umrechnung
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	I
Siemens	20mA	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{1}{20}$
S7-Format	10mA	13824	3600h		
(31h)	0mA	0	0000h		$I = D \cdot \frac{20}{27648}$
	-3,52mA	-4864	ED00h	Untersteuerung	27648
0 20mA	25,00mA	20480	5000h	Übersteuerung	D 16004 I
Siemens	20mA	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{1}{20}$
S5-Format	10mA	8192	2000h		
(41h)	0mA	0	0000h		$I = D \cdot \frac{20}{16384}$
	-4,00mA	-3277	F333h	Untersteuerung	16384
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{I-4}{16}$
Siemens	20mA	27648	6C00h	Nennbereich	<i>D</i> = 27048 · <u>16</u>
S7-Format	12mA	13824	3600h		$I = D \cdot \frac{16}{27648} + 4$
(30h)	4mA	0	0000h		$T = D \cdot \frac{1}{27648} + 4$
	1,19mA	-4864	ED00h	Untersteuerung	
4 20mA	24,00mA	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{I-4}{16}$
Siemens	20mA	16384	4000h	Nennbereich	$D = 10384 \cdot \frac{16}{16}$
S5-Format	12mA	8192	2000h		16
(40h)	4mA	0	0000h		$I = D \cdot \frac{16}{16384} + 4$
	0,8mA	-3277	F333h	Untersteuerung	

031-1BB10 - AI 2x12Bit 0(4)...20mA - ISO > Parametrierdaten

0 ... 20mA / 4KM-Format


Messbereich	Strom	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(I)	(D)			
0 20mA	20,457mA	4095	0FFFh	Übersteuerung	D 4000 I
4KM-Format	20mA	4000	0FA0h	Nennbereich	$D = 4000 \cdot \frac{1}{20}$
(3Fh)	10mA	2000	07D0h		
	0mA	0	0000h		$I = D \cdot \frac{20}{}$
				Untersteuerung	4000

CHxFO Funktionsoption Kanal x

Als Funktionsoption können Sie je Kanal die Zeitkonstante x10ms für einen Tiefpass-Filter vorgeben. Bei dem Filter handelt es sich um einen Butterworth-Filter 2. Ordnung. Hiermit lassen sich Frequenzen, welche oberhalb der Grenzfrequenz liegen, ausfiltern. Die Vorgabe zur Störfrequenzunterdrückung (SFU) von 50Hz bzw. 60Hz beträgt 200ms bzw. 170ms.

Wertebereich: 0 ... 250 (0 = deaktiviert)

Die nachfolgende Abbildung zeigt das Einschwingverhalten des Filters bei Vorgabe einer Zeitkonstante von 500ms. Hier erreicht der Filter nach 1700ms zum ersten mal den Sollwert.

CHxUL / CHxLL Oberer Grenzwert Unterer Grenzwert Kanal x Sie können für jeden Kanal einen Oberen bzw. Unteren Grenzwert definieren. Hierbei können Sie ausschließlich Werte aus dem Nennbereich vorgeben, ansonsten erhalten Sie einen Parametrierfehler. Durch Angabe von 7FFFh für den oberen bzw. 8000h für den unteren Grenzwert wird der entsprechende Grenzwert deaktiviert. Sobald sich Ihr Messwert außerhalb eines Grenzwerts befindet und Sie die Grenzwertüberwachung aktiviert haben, wird ein Prozessalarm ausgelöst.

031-1BB10 - AI 2x12Bit 0(4)...20mA - ISO > Diagnose und Alarm

3.4.3 Diagnose und Alarm

Auslöser	Prozessalarm	Diagnosealarm	parametrierbar
Projektierungs-/	-	X	-
Parametrierungsfehler			
Messbereichsüberschreitung	-	X	-
Messbereichsunterschreitung	-	X	-
Grenzwertüberschreitung	X	-	X
Grenzwertunterschreitung	X	-	X
Diagnosepufferüberlauf	-	X	-
Prozessalarm verloren	-	X	-
Geberversorgungs-	-	X	-
überwachung			

Prozessalarmdaten

Damit Sie auf asynchrone Ereignisse reagieren können, haben Sie die Möglichkeit Prozessalarme zu aktivieren. Ein Prozessalarm unterbricht den linearen Programmablauf und verzweigt je nach Master-System in eine bestimmte Interrupt-Routine. Hier können Sie entsprechend auf den Prozessalarm reagieren.

Bei CANopen werden die Prozessalarmdaten über ein Emergency-Telegramm übertragen.

Bei Zugriff über CPU, PROFIBUS und PROFINET erfolgt die Übertragung der Prozessalarmdaten mittels Diagnosetelegramm.

SX - Subindex für Zugriff über EtherCAT mit Index 5000h

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	SX
PRIT_OL	1	Oberer Grenzwert Kanal x überschritten	00h	02h
PRIT_UL	1	Unterer Grenzwert Kanal x überschritten	00h	03h
PRIT_US	2	µs-Ticker	00h	04h (High-Byte)
				05h (Low-Byte)

PRIT_OL Grenzwertüberschreitung

Byte	Bit 7 0	
0	 Bit 0: Oberer Grenzwert Kanal 0 überschritten Bit 1: Oberer Grenzwert Kanal 1 überschritten Bit 7 2: reserviert 	

PRIT_UL Grenzwertunterschreitung

Byte	Bit 7 0	
0	 Bit 0: Unterer Grenzwert Kanal 0 überschritten Bit 1: Unterer Grenzwert Kanal 1 überschritten Bit 7 2: reserviert 	

031-1BB10 - AI 2x12Bit 0(4)...20mA - ISO > Diagnose und Alarm

PRIT_US µs-Ticker

Byte	Bit 7 0
01	Wert des µs-Ticker bei Auftreten des Prozessalarms

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} -1 μ s wieder bei 0 beginnt. PRIT_US repräsentiert die unteren 2 Byte des μ s-Ticker-Werts (0 ... 2^{16} -1).

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose kommend bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm gehend. Wurde für einen Kanal ein Diagnosealarm kommend wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm gehend verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm kommend bis letzter Diagnosealarm gehend) leuchtet die MF-LED des Moduls.

- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	μs-Ticker	00h			13h

031-1BB10 - Al 2x12Bit 0(4)...20mA - ISO > Diagnose und Alarm

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 5: reserviert Bit 6: gesetzt bei Prozessalarm verloren Bit 7: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 ■ Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler ■ Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

031-1BB10 - Al 2x12Bit 0(4)...20mA - ISO > Diagnose und Alarm

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0					
0	Kanalspezifische Fehler: Kanal x:					
	■ Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler					
	■ Bit 1: Rohwert oberhalb des zulässigen Bereichs					
	Bit 2: Rohwert unterhalb des zulässigen Bereichs					
	■ Bit 3: reserviert					
	Bit 4: Geberversorgungsspannungsfehler					
	Bit 5: gesetzt bei Prozessalarm verloren					
	■ Bit 6: gesetzt bei Messbereichsunterschreitung					
	■ Bit 7: gesetzt bei Messbereichsüberschreitung					

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

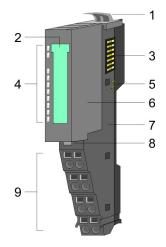
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

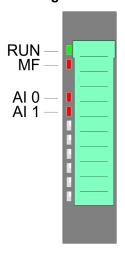
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1BB30 - AI 2x12Bit 0...10V


3.5 031-1BB30 - AI 2x12Bit 0...10V

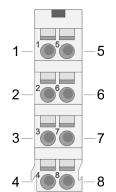
Eigenschaften

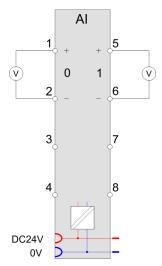
Das Elektronikmodul besitzt 2 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.


- 2 analoge Eingänge
- Geeignet für Geber mit 0 ... 10V
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen


Statusanzeige


RUN grün	MF rot	Al x ■ rot	Beschreibung
•		x	Bus-Kommunikation ist OK Modul-Status ist OK
•	•	x	Bus-Kommunikation ist OK Modul-Status meldet Fehler
		x	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler <i>∜</i> Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
•		•	Fehler Kanal x ■ Signal liegt außerhalb des Messbereichs ■ Fehler in der Parametrierung
nicht relevan	t: X		

031-1BB30 - AI 2x12Bit 0...10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3			nicht belegt
4			nicht belegt
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7			nicht belegt
8			nicht belegt

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	Al 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

031-1BB30 - Al 2x12Bit 0...10V > Technische Daten

3.5.1 Technische Daten

Artikelnr.	031-1BB30
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0401 15C3
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	80 mA
Verlustleistung	0,7 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Spannungseingänge	✓
min. Eingangswiderstand im Spannungsbereich	100 kΩ
Eingangsspannungsbereiche	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,3%
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	+/-0,2%
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	max. 30V
Stromeingänge	-
max. Eingangswiderstand im Strombereich	-
Eingangsstrombereiche	±
Gebrauchsfehlergrenze Strombereiche	
	-
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche	- -
•	- - -
Grundfehlergrenze Strombereiche	- - -
Grundfehlergrenze Strombereiche mit SFU	
Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung)	
Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom)	
Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge	
Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche	
Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche	
Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	
Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche	-

031-1BB30 - AI 2x12Bit 0...10V > Technische Daten

Artikelnr.	031-1BB30
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	12
Messprinzip	sukzessive Approximation
Grundwandlungszeit	2 ms alle Kanäle
Störspannungsunterdrückung für Frequenz	>50dB bei 50Hz (UCM<2V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-

031-1BB30 - AI 2x12Bit 0...10V > Parametrierdaten

Artikelnr.	031-1BB30
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 2 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	4
Ausgangsbytes	0
Parameterbytes	6
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	59 g
Gewicht inklusive Zubehör	59 g
Gewicht Brutto	74 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

3.5.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

031-1BB30 - AI 2x12Bit 0...10V > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
CH0FN	1	Funktionsnummer Kanal 0	10h	80h	3100h	01h
CH1FN	1	Funktionsnummer Kanal 1	10h	81h	3101h	02h

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(10h)	5V	13824	3600h		
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-1,76V	-4864	ED00h	Untersteuerung	2/048
0 10V	12,5V	20480	5000h	Übersteuerung	D 16204 U
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$
(20h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16204}$
	-2V	-3277	F333h	Untersteuerung	16384

3.5.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

031-1BB30 - AI 2x12Bit 0...10V > Diagnosedaten

Name	Bytes	Funktion	nktion Default DS IX		SX	
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation 15h		03h		
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h	0		09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert 00h		0Ch 11h		
DIAG_US	4	μs-Ticker 00h 13h		13h		

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

031-1BB30 - AI 2x12Bit 0...10V > Diagnosedaten

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0			
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 			

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0		
0	Kanalspezifische Fehler: Kanal x:		
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 5 1: reserviert Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung 		

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

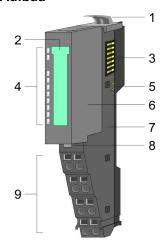
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

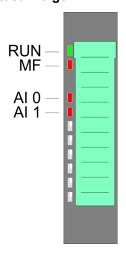
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1BB40 - AI 2x12Bit 0(4)...20mA


3.6 031-1BB40 - Al 2x12Bit 0(4)...20mA

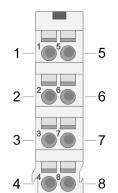
Eigenschaften

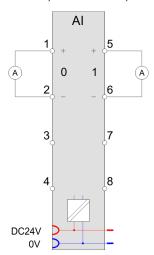
Das Elektronikmodul besitzt 2 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.


- 2 analoge Eingänge
- Geeignet für Geber mit 0 ... 20mA;
 - 4 ... 20mA mit externer Versorgung
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen


Statusanzeige


RUN grün	MF rot	Al x ■ rot	Beschreibung
		X	Bus-Kommunikation ist OK Modul-Status ist OK
		X	Bus-Kommunikation ist OK Modul-Status meldet Fehler
		x	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler <i>∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30</i>
•		•	Fehler Kanal x ■ Signal liegt außerhalb des Messbereichs ■ Fehler in der Parametrierung
nicht relevant: X			

031-1BB40 - AI 2x12Bit 0(4)...20mA

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3			nicht belegt
4			nicht belegt
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7			nicht belegt
8			nicht belegt

E: Eingang

Bei Einsatz von 2-Draht-Messumformern ist in die Messleitung eine externe Spannungsversorgung einzuschleifen.

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

031-1BB40 - Al 2x12Bit 0(4)...20mA > Technische Daten

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.6.1 Technische Daten

Artikelnr.	031-1BB40
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0402 15C3
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	80 mA
Verlustleistung	0,7 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Spannungseingänge	-
min. Eingangswiderstand im Spannungsbereich	-
Eingangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	-
Stromeingänge	✓
max. Eingangswiderstand im Strombereich	110 Ω
Eingangsstrombereiche	0 mA +20 mA
	+4 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-0,3% +/-0,5%
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	+/-0,2% +/-0,3%
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	max. 24V
Zerstörgrenze Stromeingänge (Strom)	max. 40mA
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-

031-1BB40 - Al 2x12Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1BB40
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	12
Messprinzip	sukzessive Approximation
Grundwandlungszeit	2 ms alle Kanäle
Störspannungsunterdrückung für Frequenz	>50dB bei 50Hz (UCM<2V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal

031-1BB40 - AI 2x12Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1BB40
Potenzialtrennung	
zwischen den Kanälen	
zwischen den Kanälen in Gruppen zu	
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 2 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	4
Ausgangsbytes	0
Parameterbytes	6
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	59 g
Gewicht inklusive Zubehör	59 g
Gewicht Brutto	74 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1BB40 - AI 2x12Bit 0(4)...20mA > Parametrierdaten

3.6.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3100h	01h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	3101h	02h

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

0(4) ... 20mA

Messbereich	Strom	Dezimal	Hex	Bereich	Umrechnung		
(FktNr.)	(I)	(D)					
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	D 27649 I		
Siemens	20mA	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{1}{20}$		
S7-Format	10mA	13824	3600h				
(31h)	0mA	0	0000h		$I = D \cdot \frac{20}{27648}$		
	-3,52mA	-4864	ED00h	Untersteuerung			
0 20mA	25,00mA	20480	5000h	Übersteuerung	D 16204 I		
Siemens	20mA	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{1}{20}$		
S5-Format	10mA	8192	2000h				
(41h)	0mA	0	0000h		$I = D \cdot \frac{20}{16384}$		
	-4,00mA	-3277	F333h	Untersteuerung			
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{I-4}{16}$		
Siemens	20mA	27648	6C00h	Nennbereich	D = 27040 · 16		
S7-Format	12mA	13824	3600h		$I = D \cdot \frac{16}{27648} + 4$		
(30h)	4mA	0	0000h				
	1,19mA	-4864	ED00h	Untersteuerung			
4 20mA	24,00mA	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{I-4}{16}$		
Siemens	20mA	16384	4000h	Nennbereich	$D = 10384 \cdot \boxed{16}$		
S5-Format	12mA	8192	2000h				
(40h)	4mA	0	0000h		$I = D \cdot \frac{16}{16384} + 4$		
	0,8mA	-3277	F333h	Untersteuerung			

031-1BB40 - AI 2x12Bit 0(4)...20mA > Diagnosedaten

3.6.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnose-daten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

031-1BB40 - Al 2x12Bit 0(4)...20mA > Diagnosedaten

MODTYP Modulinformation

Byte	Bit 7 0							
0	■ Bit 3 0: Modulklasse — 0101b Analogbaugruppe							
	 Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert 							

ERR_D Diagnose

Byte	Bit 7 0						
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert 						

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0							
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 							

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0					
0	Kanalspezifische Fehler: Kanal x:					
	Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler					
	Bit 5 1: reserviertBit 6: gesetzt bei Messbereichsunterschreitung					
	■ Bit 7: gesetzt bei Messbereichsüberschreitung					

031-1BB40 - AI 2x12Bit 0(4)...20mA > Diagnosedaten

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

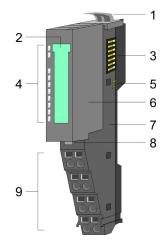
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

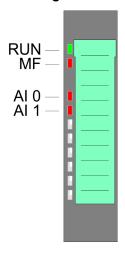
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1BB60 - AI 2x12Bit 0(4)...20mA - Sensor


3.7 031-1BB60 - Al 2x12Bit 0(4)...20mA - Sensor

Eigenschaften

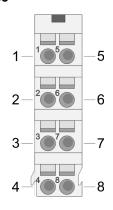
Das Elektronikmodul besitzt 2 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt.

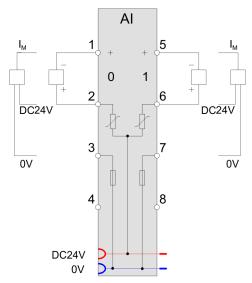

- 2 analoge Eingänge
- Geberversorgung integriert
- Geeignet für Geber mit 0(4) ... 20mA mit externer Versorgung
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige


RUN grün	MF rot	Al x ☐ rot	Beschreibung	
•		X	Bus-Kommunikation ist OK Modul-Status ist OK	
•	•	X	Bus-Kommunikation ist OK Modul-Status meldet Fehler	
	•	X	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler	
		X	Fehler Busversorgungsspannung	
X	ZHz	X	Konfigurationsfehler <i>∜</i> Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30	
			Fehler Kanal x ■ Signal liegt außerhalb des Messbereichs	
			■ Fehler in der Parametrierung	
nicht relevant: X				


Sofern das Terminal-Modul noch nicht verdrahtet ist, leuchten bei Anlegen der Versorgungsspannung die Al x LEDs aufgrund der Default-Parametrierung 4 ... 20mA.

031-1BB60 - AI 2x12Bit 0(4)...20mA - Sensor

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	DC 24V	Α	DC 24V für Sensor Kanal 0
3	0V	Α	Masse für Sensor
			(bei 3-Drahtmessung)
4			nicht belegt
5	+AI 1	Е	+ Kanal 1
6	DC 24V	Α	DC 24V für Sensor Kanal 1
7	0V	Α	Masse für Sensor
			(bei 3-Drahtmessung)
8			nicht belegt

E: Eingang, A: Ausgang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- ${\rm SX}\,$ $\,{\rm Subindex}\,$ für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

031-1BB60 - Al 2x12Bit 0(4)...20mA - Sensor > Technische Daten

3.7.1 Technische Daten

Artikelnr.	031-1BB60
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0407 15C3
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	50 mA
Verlustleistung	0,7 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Spannungseingänge	-
min. Eingangswiderstand im Spannungsbereich	-
Eingangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	-
Stromeingänge	✓
max. Eingangswiderstand im Strombereich	110 Ω
Eingangsstrombereiche	0 mA +20 mA +4 mA +20 mA
Cabrayahafahlararanga Strambaraiaha	
Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche mit SFU	+/-0,3% +/-0,5%
•	- +/-0,2% +/-0,3%
Grundfehlergrenze Strombereiche	T/-U,2% T/-U,3%
Grundfehlergrenze Strombereiche mit SFU	max. 24V
Zerstörgrenze Stromeingänge (Spannung)	
Zerstörgrenze Stromeingänge (Strom)	max. 40mA
Widerstandseingänge	-
Widerstandsbereiche Cohrauchefehlergranze Widerstandsbereiche	
Gebrauchsfehlergrenze Widerstandsbereiche	
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	
Grundfehlergrenze Widerstandsbereiche	
Grundfehlergrenze Widerstandsbereiche mit SFU	
Zerstörgrenze Widerstandseingänge	

031-1BB60 - Al 2x12Bit 0(4)...20mA - Sensor > Technische Daten

Artikelnr.	031-1BB60
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	12
Messprinzip	sukzessive Approximation
Grundwandlungszeit	2 ms alle Kanäle
Störspannungsunterdrückung für Frequenz	>50dB bei 50Hz (UCM<2V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-

031-1BB60 - Al 2x12Bit 0(4)...20mA - Sensor > Technische Daten

Artikelnr.	031-1BB60
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	-
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Technische Daten Geberversorgung	
Anzahl Ausgänge	2
Ausgangsspannung (typ)	L+ (-250 mV)
Ausgangsspannung (Nennwert)	50 mA
Kurzschlussschutz	Multifuse 0,1 A
Potenzialbindung	Feldspannung DC 24V
Datengrößen	
Eingangsbytes	4
Ausgangsbytes	0
Parameterbytes	6
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	58 g
Gewicht inklusive Zubehör	58 g
Gewicht Brutto	72 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1BB60 - Al 2x12Bit 0(4)...20mA - Sensor > Parametrierdaten

3.7.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
CH0FN	1	Funktionsnummer Kanal 0	30h	80h	3100h	01h
CH1FN	1	Funktionsnummer Kanal 1	30h	81h	3101h	02h

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

0(4) ... 20mA

Messbereich	Strom	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(I)	(D)				
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	D 27649 I	
Siemens	20mA	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{I}{20}$	
S7-Format	10mA	13824	3600h			
(31h)	0mA	0	0000h		$I = D \cdot \frac{20}{27648}$	
	-3,52mA	-4864	ED00h	Untersteuerung	27648	
0 20mA	25,00mA	20480	5000h	Übersteuerung	D 16204 I	
Siemens	20mA	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{I}{20}$	
S5-Format	10mA	8192	2000h			
(41h)	0mA	0	0000h		$I = D \cdot \frac{20}{16384}$	
	-4,00mA	-3277	F333h	Untersteuerung	16384	
4 20mA Siemens S7-Format	22,81mA	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{I-4}{16}$	
	20mA	27648	6C00h	Nennbereich	D = 27048 · 16	
	12mA	13824	3600h		$I = D \cdot \frac{16}{27648} + 4$	
(30h)	4mA	0	0000h		$T = D \cdot \frac{1}{27648} + 4$	
	1,19mA	-4864	ED00h	Untersteuerung		
4 20mA	24,00mA	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{I-4}{16}$	
Siemens	20mA	16384	4000h	Nennbereich	$D = 10304 \cdot \frac{1}{16}$	
S5-Format	12mA	8192	2000h		16	
(40h)	4mA	0	0000h		$I = D \cdot \frac{16}{16384} + 4$	
	0,8mA	-3277	F333h	Untersteuerung		

031-1BB60 - AI 2x12Bit 0(4)...20mA - Sensor > Diagnosedaten

3.7.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	µs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

031-1BB60 - AI 2x12Bit 0(4)...20mA - Sensor > Diagnosedaten

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 5 1: reserviert
	■ Bit 6: gesetzt bei Messbereichsunterschreitung
	■ Bit 7: gesetzt bei Messbereichsüberschreitung

031-1BB60 - Al 2x12Bit 0(4)...20mA - Sensor > Diagnosedaten

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

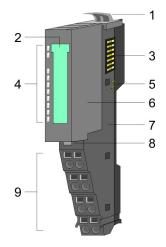
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

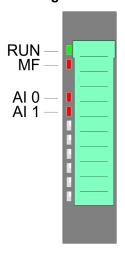
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1BB70 - AI 2x12Bit ±10V


3.8 031-1BB70 - AI 2x12Bit ±10V

Eigenschaften

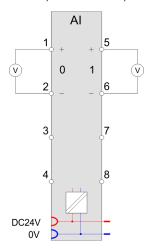
Das Elektronikmodul besitzt 2 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.


- 2 analoge Eingänge
- Geeignet für Geber mit ±10V, 0 ... 10V
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen


Statusanzeige


RUN grün	MF rot	Al x ■ rot	Beschreibung
		X	Bus-Kommunikation ist OK
		Λ	Modul-Status ist OK
	_	X	Bus-Kommunikation ist OK
		^	Modul-Status meldet Fehler
		V	Bus-Kommunikation nicht möglich
		X	Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler <i>∜</i> Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			Signal liegt außerhalb des MessbereichsFehler in der Parametrierung
nicht relevan	t: X		

031-1BB70 - AI 2x12Bit ±10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3			nicht belegt
4			nicht belegt
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7			nicht belegt
8			nicht belegt

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

031-1BB70 - AI 2x12Bit ±10V > Technische Daten

3.8.1 Technische Daten

Artikelnr.	031-1BB70
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0408 15C3
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	50 mA
Verlustleistung	0,5 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Spannungseingänge	✓
min. Eingangswiderstand im Spannungsbereich	100 kΩ
Eingangsspannungsbereiche	-10 V +10 V
	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,3%
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	+/-0,2%
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	max. 30V
Stromeingänge	-
max. Eingangswiderstand im Strombereich	-
Eingangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	-
Zerstörgrenze Stromeingänge (Strom)	-
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-

031-1BB70 - Al 2x12Bit ±10V > Technische Daten

Artikelnr.	031-1BB70
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	12
Messprinzip	sukzessive Approximation
Grundwandlungszeit	2 ms alle Kanäle
Störspannungsunterdrückung für Frequenz	>50dB bei 50Hz (UCM<2V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-

031-1BB70 - Al 2x12Bit ±10V > Technische Daten

Artikelnr.	031-1BB70
zwischen den Kanälen in Gruppen zu	
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 2 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	4
Ausgangsbytes	0
Parameterbytes	6
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	60 g
Gewicht inklusive Zubehör	60 g
Gewicht Brutto	74 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1BB70 - Al 2x12Bit ±10V > Parametrierdaten

3.8.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
CH0FN	1	Funktionsnummer Kanal 0	12h	80h	3100h	01h
CH1FN	1	Funktionsnummer Kanal 1	12h	81h	3101h	02h

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

±10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
±10V	11,76V	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(12h)	5V	13824	3600h		
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-5V	-13824	CA00h		2/048
	-10V	-27648	9400h		
	-11,76V	-32512	8100h	Untersteuerung	
±10V	12,5V	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{U}{10}$
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot {10}$
(22h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$
	-5V	-8192	E000h		16384
	-10V	-16384	C000h		
	-12,5V	-20480	B000h	Untersteuerung	

031-1BB70 - Al 2x12Bit ±10V > Diagnosedaten

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(10h)	5V	13824	3600h		10
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-1,76V	-4864	ED00h	Untersteuerung	27046
0 10V	12,5V	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{U}{10}$
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 10384 \cdot \frac{10}{10}$
(20h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$
	-2V	-3277	F333h	Untersteuerung	16384

3.8.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h

031-1BB70 - Al 2x12Bit ±10V > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse – 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte
0

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

031-1BB70 - AI 2x12Bit ±10V > Diagnosedaten

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 5 1: reserviert Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

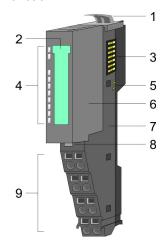
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

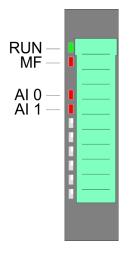
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1BB90 - AI 2x16Bit TC


3.9 031-1BB90 - AI 2x16Bit TC

Eigenschaften

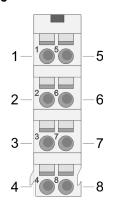
Das Elektronikmodul besitzt 2 Eingänge zur Temperatur- und Spannungsmessung, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt.

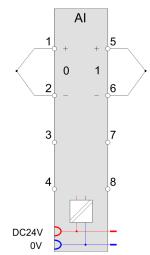

- 2 analoge Eingänge
- Geeignet für Geber vom Typ J, K, N, R, S, T, B, C, E, L und für Spannungsmessung ±
- Alarm- und Diagnosefunktion
- 16Bit Auflösung
- Interne Temperaturkompensation
- Hohe Potenzialdifferenz zwischen den Eingängen von DC140V/AC60V

Aufbau

- Verriegelungshebel Terminal-Modul 1
- 2 Beschriftungsstreifen
- Rückwandbus
- LED-Statusanzeige 4
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- Verriegelungshebel Elektronik-Modul 8
- Anschlussklemmen

Statusanzeige




RUN	MF	Al x	Beschreibung
grün	rot	rot	beschielbung
		X	Bus-Kommunikation ist OK
		Χ	Modul-Status ist OK
	_	X	Bus-Kommunikation ist OK
		^	Modul-Status meldet Fehler
	_	X	Bus-Kommunikation nicht möglich
		X	Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler & Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
•			 Signal liegt außerhalb des Messbereichs Fehler in der Parametrierung Drahtbruch (falls parametriert)
nicht relevan	t: X		

031-1BB90 - AI 2x16Bit TC

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+TC 0	E	+ Kanal 0
2	-TC 0	E	Masse Kanal 0
3			nicht belegt
4			nicht belegt
5	+TC 1	E	+ Kanal 1
6	-TC 1	E	Masse Kanal 1
7			nicht belegt
8			nicht belegt

E: Eingang

VORSICHT!

Bitte beachten Sie, dass das Elektronik-Modul AI 2x16Bit TC ausschließlich mit dem Terminal-Modul 001-0AA20 betrieben werden darf!

Bitte achten Sie beim Anschluss der Messwertgeber immer auf richtige Polarität! Schließen Sie nicht benutzte Eingänge kurz, indem Sie den positiven Anschluss und die Kanal-Masse des jeweiligen Kanals miteinander verbinden.

Ergänzung zu den Aufbaurichtlinien

Zur Vermeidung von Temperaturschwankungen innerhalb des Moduls, welche die Genauigkeit der Messung beeinflussen können, sollten Sie bei der Montage folgende Punkte beachten:

- Ordnen Sie das Modul nicht unmittelbar neben einem Power-Modul mit einem hohen Einspeisestrom an.
- Montieren Sie das Modul nicht an das Ende einer Zeile.

031-1BB90 - AI 2x16Bit TC

Das Modul sollte sich in einem statischen Zustand befinden, d.h. die Temperatur sollte in der Umgebung Ihres Moduls möglichst konstant sein (geschlossener Schaltschrank ohne Luftzug).

Die Genauigkeit wird nach ca. 30 Minuten nach Eintritt in den statischen Zustand erreicht.

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

031-1BB90 - Al 2x16Bit TC > Technische Daten

3.9.1 Technische Daten

Artikelnr.	031-1BB90
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0403 1543
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	85 mA
Verlustleistung	1,1 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	30 mA
Spannungseingänge	-
min. Eingangswiderstand im Spannungsbereich	10 ΜΩ
Eingangsspannungsbereiche	-80 mV +80 mV
Gebrauchsfehlergrenze Spannungsbereiche	±0,3%
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	±0,1%
Grundfehlergrenze Spannungsbereiche	±0,25%
Grundfehlergrenze Spannungsbereiche mit SFU	±0,05%
Zerstörgrenze Spannung	max. 20V
Stromeingänge	-
max. Eingangswiderstand im Strombereich	-
Eingangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche mit SFU	-
-	- -
Gebrauchsfehlergrenze Strombereiche mit SFU	- - -
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche	- - -
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU	
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung)	
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom)	
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge	
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche	
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche	
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche	

031-1BB90 - AI 2x16Bit TC > Technische Daten

Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometereingänge Thermoelementeingänge Thermoelementbereiche Typ B Typ C Typ B Typ C Typ L Typ K Typ L Typ N Typ R Typ R Typ R Typ S Typ T Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±2,5K / Typ B, C, R, S: ±8,0K c Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±1,5K / Typ B, C, R, S: ±4,0K Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometereingänge - Thermoelementeingänge Thermoelementbereiche Typ B Typ C Typ E Typ J Typ K Typ L Typ N Typ R Typ R Typ S Typ T Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±2,5K / Typ B, C, R, S: ±4,0K Grundfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±7,0K Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K
mit SFU Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometereingänge Thermoelementeingänge Thermoelementbereiche Typ B Typ C Typ E Typ J Typ K Typ L Typ N Typ R Typ R Typ S Typ T Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±4,0K Grundfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±7,0K Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometereingänge Thermoelementeingänge Typ B Typ C Typ E Typ J Typ K Typ L Typ N Typ R Typ R Typ S Typ T Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±3,0K Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±7,0K Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K
SFU Zerstörgrenze Widerstandsthermometereingänge Thermoelementbereiche Typ B Typ C Typ E Typ J Typ K Typ L Typ N Typ R Typ S Typ T Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±3,0K Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±3,0K
Thermoelementbereiche Typ B Typ C Typ E Typ J Typ K Typ L Typ N Typ R Typ S Typ T Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±2,5K / Typ B, C, R, S: ±8,0K cR Typ E, L, T, J, K, N: ±2,5K / Typ B, C, R, S: ±4,0K Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±4,0K Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±7,0K Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K
Thermoelementbereiche Typ B Typ C Typ E Typ J Typ K Typ L Typ N Typ R Typ S Typ T Gebrauchsfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±2,5K / Typ B, C, R, S: ±8,0K cR Gebrauchsfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±1,5K / Typ B, C, R, S: ±4,0K Grundfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±7,0K Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±7,0K Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K
Typ C Typ E Typ J Typ K Typ L Typ N Typ R Typ S Typ T Gebrauchsfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±2,5K / Typ B, C, R, S: ±8,0K cR Gebrauchsfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±1,5K / Typ B, C, R, S: ±4,0K Grundfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±7,0K Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±3,0K
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±1,5K / Typ B, C, R, S: ±4,0K Grundfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±7,0K Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K
Grundfehlergrenze Thermoelementbereiche Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±7,0K Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K
Grundfehlergrenze Thermoelementbereiche mit SFU Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K
Zerstörgrenze Thermoelementeingänge max 20V
Zorotorgronizo Thormodomonionigango
Temperaturkompensation parametrierbar ✓
Temperaturkompensation extern ✓
Temperaturkompensation intern ✓
Temperaturfehler der internen Kompensation 1 K
Technische Einheit der Temperaturmessung °C, °F, K
Auflösung in Bit 16
Messprinzip Sigma-Delta
Grundwandlungszeit 4,2324,1 ms (50 Hz) 3,8270,5 ms (60 Hz) pro Kanal
Störspannungsunterdrückung für Frequenz >90dB bei 50Hz (UCM<10V)
Status, Alarm, Diagnosen
Statusanzeige ja
Alarme ja
Prozessalarm ja, parametrierbar
Diagnosealarm ja, parametrierbar

031-1BB90 - Al 2x16Bit TC > Technische Daten

Artikelnr.	031-1BB90
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	-
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	4
Ausgangsbytes	0
Parameterbytes	22
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	58 g
Gewicht inklusive Zubehör	58 g
Gewicht Brutto	72 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	

031-1BB90 - AI 2x16Bit TC > Technische Daten

Artikelnr.	031-1BB90
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

Die angegebenen Fehlergrenzen gelten ab folgenden Temperaturen:

- Thermoelement Typ T: -200 °C
- Thermoelement Typ K: -100 °C
- Thermoelement Typ B: +700 °C
- Thermoelement Typ N: -150 °C
- Thermoelement Typ E: -150 °C
- Thermoelement Typ R: +200 °C
- Thermoelement Typ S: +100 °C
- Thermoelement Typ J: -100 °C

SFU: Störfrequenzunterdrückung

031-1BB90 - AI 2x16Bit TC > Parametrierdaten

3.9.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose*	00h	00h	3100h	01h
WIBRK_EN	1	Drahtbrucherkennung*	00h	00h	3101h	02h
LIMIT_EN	1	Grenzwertüberwachung*	00h	00h	3102h	03h
RES3	1	reserviert	00h	00h	3103h	04h
TEMPCNF	1	Temperatursystem	00h	01h	3104h	05h
SUPR	1	Störfrequenzunterdrückung (SFU)	02h	01h	3105h	06h
CH0FN	1	Funktionsnummer Kanal 0	C1h	80h	3106h	07h
CH0FO	1	Funktionsoption Kanal 0	02h	80h	3107h	08h
CH0UL	2	Oberer Grenzwert Kanal 0	7FFFh	80h	3108h3109 h	09h
CH0LL	2	Unterer Grenzwert Kanal 0	8000h	80h	310Ah310B h	0Ah
CH1FN	1	Funktionsnummer Kanal 1	C1h	81h	310Ch	0Bh
CH1FO	1	Funktionsoption Kanal 1	02h	81h	310Dh	0Ch
CH1UL	2	Oberer Grenzwert Kanal 1	7FFFh	81h	310Eh310F h	0Dh
CH1LL	2	Unterer Grenzwert Kanal 1	8000h	81h	3110h3111h	0Eh
* Diesen Datensatz dürfen Sie ausschließlich im STOP-Zustand übertragen.						

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm00h: sperren40h: freigeben

[■] Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

031-1BB90 - Al 2x16Bit TC > Parametrierdaten

WIBRK_EN Drahtbrucherkennung

Byte	Bit 7 0
0	 Bit 0: Drahtbrucherkennung Kanal 0 (1: an) Bit 1: Drahtbrucherkennung Kanal 1 (1: an) Bit 7 2: reserviert

Aufgrund der hohen Empfindlichkeit der Eingänge sollten nicht verwendete Eingänge in der Parametrierung deaktiviert werden. Offene Eingänge können aufgrund der hohen Eingangsimpedanz durch benachbarte Kanäle bzw. bedingt durch das Messverfahren bei der Drahtbrucherkennung beeinflusst werden. Da der gesamte Messbereich sich im mV-Bereich bewegt, können durch offene Eingänge bereits Messbereichsüberschreitungen erkannt werden.

LIMIT_EN Grenzwertüberwachung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberwachung Kanal 0 (1: an) Bit 1: Grenzwertüberwachung Kanal 1 (1: an) Bit 7 2: reserviert

TEMPCNF Temperatursystem

Byte	Bit 7 0
0	■ Bit 0, 1: Temperatursystem - 00: °C - 01: °F - 10: K
	■ Bit 7 2: reserviert

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 0, 1: Störfrequenzunterdrückung 01: 60Hz 10: 50Hz Bit 7 2: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden.

Durch Angabe von FFh wird der entsprechende Kanal deaktiviert.

031-1BB90 - Al 2x16Bit TC > Parametrierdaten

Spannung

-80 ... 80mV

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
-80 80mV	94,07mV	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	80mV	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{80}$
(11h)	0V	0	0000h		
	-80mV	-27648	9400h		$U = D \cdot \frac{80}{27648}$
	-94,07mV	-32512	8100h	Untersteuerung	2/648
-80 80mV	100mV	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{U}{80}$
Siemens S5-Format	80mV	16384	4000h	Nennbereich	$D = 16384 \cdot {80}$
(21h)	0V	0	0000h		
	-80mV	-16384	C000h		$U = D \cdot \frac{80}{16384}$
	-100mV	-20480	B000h	Untersteuerung	16384

Temperatur

Messbereich (FktNr.)	Messwert in °C (0,1°C/Digit)	Messwert in °F (0,1°F/Digit)	Messwert in K (0,1K/Digit)	Bereich
Typ J:	+14500	26420	17232	Übersteuerung
[Fe-Cu-Ni IEC]	-2100 +12000	-3460 21920	632 14732	Nennbereich
-210 +1200°C -346 2192°F 63,2 1473,2K (B0h: ext. Komp. 0°C) (C0h: int. Komp. 0°C)				Untersteuerung
Тур К:	+16220	29516	18952	Übersteuerung
[Ni-Cr-Ni]	-2700 +13720	-4540 25016	0 16452	Nennbereich
-270 +1372°C -454 2501,6°F 0 1645,2K (B1h: ext. Komp. 0°C) (C1h: int. Komp. 0°C)				Untersteuerung
Typ N:	+15500	28220	18232	Übersteuerung
[Ni-Cr-Si]	-2700 +13000	-4540 23720	0 15732	Nennbereich
-270 +1300°C -454 2372°F 0 1573,2K (B2h: ext. Komp. 0°C) (C2h: int. Komp. 0°C)				Untersteuerung

031-1BB90 - AI 2x16Bit TC > Parametrierdaten

Messbereich	Messwert in °C	Messwert in °F	Messwert in K	Bereich
(FktNr.)	(0,1°C/Digit)	(0,1°F/Digit)	(0,1K/Digit)	
Тур R:	+20190	32766	22922	Übersteuerung
[PtRh-Pt]	-500 + 17690	-580 32162	2232 20422	Nennbereich
-50 +1769°C -58 3216,2°F 223,2 2042,2K (B3h: ext. Komp. 0°C) (C3h: int. Komp. 0°C)	-1700	-2740	1032	Untersteuerung
Typ S:	+20190	32766	22922	Übersteuerung
[PtRh-Pt]	-500 +17690	-580 32162	2232 20422	Nennbereich
-50 +1769°C -58 3216,2°F 223,2 2042,2K (B4h: ext. Komp. 0°C) (C4h: int. Komp. 0°C)	-1700	-2740	1032	Untersteuerung
Тур Т:	+5400	10040	8132	Übersteuerung
[Cu-Cu-Ni]	-2700 + 4000	-4540 7520	32 6732	Nennbereich
-270 +400°C -454 752°F 3,2 673,2K (B5h: ext. Komp. 0°C) (C5h: int. Komp. 0°C)				Untersteuerung
Тур В:	+20700	32766	23432	Übersteuerung
[PtRh-PtRh]	0 +18200	320 27865	2732 20932	Nennbereich
0 +1820°C 32 2786,5°F 273,2 2093,2K (B6h: ext. Komp. 0°C) (C6h: int. Komp. 0°C)	-1200	-1840	1532	Untersteuerung
Тур С:	+25000	32766	23432	Übersteuerung
[WRe5-WRe26]	0 +23150	320 27865	2732 20932	Nennbereich
0 +2315°C 32 2786,5°F 273,2 2093,2K (B7h: ext. Komp. 0°C) (C7h: int. Komp. 0°C)	-1200	-1840	1532	Untersteuerung
Тур Е:	+12000	21920	14732	Übersteuerung
[Ni-Cr - Cu-Ni] -270 +1000°C	-2700 +10000	-4540 18320	0 12732	Nennbereich

031-1BB90 - Al 2x16Bit TC > Parametrierdaten

Messbereich	Messwert in °C	Messwert in °F	Messwert in K	Bereich
(FktNr.)	(0,1°C/Digit)	(0,1°F/Digit)	(0,1K/Digit)	
-454 1832°F				Untersteuerung
0 1273,2K				
(B8h: ext. Komp. 0°C)				
(C8h: int. Komp. 0°C)				
Typ L:	+11500	21020	14232	Übersteuerung
[Fe-Cu-Ni]	-2000 +9000	-3280 16520	732 11732	Nennbereich
-200 +900°C				Untersteuerung
-328 1652°F				
73,2 1173,2K				
(B9h: ext. Komp. 0°C)				
(C9h: int. Komp. 0°C)				

CHxFO Funktionsoption Kanal x

Hier können Sie abhängig von der Störfrequenzunterdrückung für jeden Kanal die Wandlergeschwindigkeit einstellen.

Code*	Wandlungszeit (in ms) / Kanal bei Störfrequenzunterdrückung		
	50Hz	60Hz	
00h*	324,1	270,5	
01h*	164,2	137,2	
02h*	84,2	70,5	
03h	44,1	37,2	
04h	24,2	20,5	
05h	14,2	12,2	
06h	9,2	8,0	
07h	6,6	5,9	
08h	4,2	3,8	
) F O - d - 00h 04h	1001 11 11 7 1	-b-ib D-t IIit Ot-f	

^{*)} Für Code 00h, 01h und 02h gelten die Toleranzangaben in den technischen Daten "mit Störfrequenzunterdrückung".

CHxUL / CHxLL Kanal x

Sie können für jeden Kanal einen *Oberen* bzw. *Unteren Grenzwert* definieren. Hierbei können Sie ausschließlich Werte aus dem Nennbereich vorgeben, ansonsten erhalten Sie einen Parametrierfehler. Durch Angabe von 7FFFh für den oberen bzw. 8000h für den unteren Grenzwert wird der entsprechende Grenzwert deaktiviert. Sobald sich Ihr Messwert außerhalb eines Grenzwerts befindet und Sie die Grenzwertüberwachung aktiviert haben, wird ein Prozessalarm ausgelöst.

031-1BB90 - Al 2x16Bit TC > Diagnose und Alarm

3.9.3 Diagnose und Alarm

Auslöser	Prozessalarm	Diagnosealarm	parametrierbar
Projektierungs-/Parametrierungsfehler	-	X	-
Drahtbruch	-	X	X
Messbereichsüberschreitung	-	X	-
Messbereichsunterschreitung	-	X	-
Grenzwertüberschreitung	X	-	X
Grenzwertunterschreitung	X	-	X
Diagnosepufferüberlauf	-	X	-
Kommunikationsfehler	-	X	-
Prozessalarm verloren	-	X	-

Prozessalarmdaten

Damit Sie auf asynchrone Ereignisse reagieren können, haben Sie die Möglichkeit Prozessalarme zu aktivieren. Ein Prozessalarm unterbricht den linearen Programmablauf und verzweigt je nach Master-System in eine bestimmte Interrupt-Routine. Hier können Sie entsprechend auf den Prozessalarm reagieren.

Bei CANopen werden die Prozessalarmdaten über ein Emergency-Telegramm übertragen.

Bei Zugriff über CPU, PROFIBUS und PROFINET erfolgt die Übertragung der Prozessalarmdaten mittels Diagnosetelegramm.

SX - Subindex für Zugriff über EtherCAT mit Index 5000h

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	SX
PRIT_OL	1	Oberer Grenzwert Kanal x überschritten	00h	02h
PRIT_UL	1	Unterer Grenzwert Kanal x überschritten	00h	03h
PRIT_US	2	µs-Ticker	00h	04h (High-Byte)
				05h (Low-Byte)

PRIT_OL Grenzwertüberschreitung

Byte	Bit 7 0
0	Bit 0: Grenzwertüberschreitung Kanal 0
	Bit 1: Grenzwertüberschreitung Kanal 1
	Bit 7 2: reserviert

PRIT_UL Grenzwertunterschreitung

Byte	Bit 7 0
0	Bit 0: Grenzwertunterschreitung Kanal 0
	Bit 1: Grenzwertunterschreitung Kanal 1
	Bit 7 2: reserviert

031-1BB90 - Al 2x16Bit TC > Diagnose und Alarm

PRIT_US µs-Ticker

Byte	Bit 7 0
0 1	Wert des µs-Ticker bei Auftreten des Prozessalarms

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} -1 μ s wieder bei 0 beginnt. PRIT_US repräsentiert die unteren 2 Byte des μ s-Ticker-Werts (0 ... 2^{16} -1).

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose kommend bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm gehend. Wurde für einen Kanal ein Diagnosealarm kommend wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm gehend verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm kommend bis letzter Diagnosealarm gehend) leuchtet die MF-LED des Moduls.

- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	µs-Ticker	00h			13h

031-1BB90 - Al 2x16Bit TC > Diagnose und Alarm

ERR_A Diagnose

Byte	Bit 7 0
0	■ Bit 0: gesetzt, wenn Baugruppenstörung
	■ Bit 1: gesetzt bei Fehler intern
	■ Bit 2: gesetzt, bei Fehler extern
	■ Bit 3: gesetzt, bei Kanalfehler vorhanden
	■ Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung
	■ Bit 6 5: reserviert
	■ Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse – 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 5: reserviert Bit 6: gesetzt bei Prozessalarm verloren Bit 7: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 ■ Bit 6 0: Kanaltyp - 70h: Digitaleingabe - 71h: Analogeingabe - 72h: Digitalausgabe - 73h: Analogausgabe - 74h: Analogeingabe/-ausgabe - 76h: Zähler ■ Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

031-1BB90 - Al 2x16Bit TC > Diagnose und Alarm

CHERR Kanalfehler

Byte	Bit 7 0	
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 	

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 3 1: reserviert Bit 4: gesetzt bei Drahtbruch Bit 5: gesetzt bei Prozessalarm verloren Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

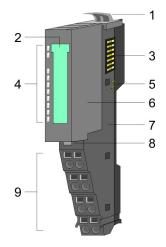
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

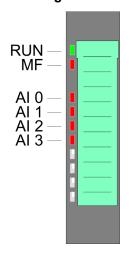
Im SLIO-Modul befindet sich ein 32-Bit Timer (µs-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1µs wieder bei 0 beginnt.

031-1BD30 - AI 4x12Bit 0...10V


3.10 031-1BD30 - AI 4x12Bit 0...10V

Eigenschaften

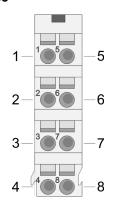
Das Elektronikmodul besitzt 4 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

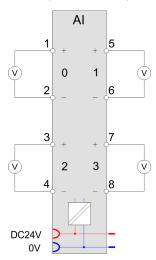

- 4 analoge Eingänge
- Geeignet für Geber mit 0 ... 10V
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x ■ rot	Beschreibung				
		X	Bus-Kommunikation ist OK				
		Λ	Bus-Kommunikation ist OK Modul-Status ist OK Bus-Kommunikation ist OK Modul-Status meldet Fehler Bus-Kommunikation nicht möglich Modul-Status meldet Fehler Fehler Busversorgungsspannung Konfigurationsfehler Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30 Fehler Kanal x				
	_	X	Bus-Kommunikation ist OK				
		^	Modul-Status meldet Fehler				
		X	Bus-Kommunikation nicht möglich				
		X	Modul-Status meldet Fehler				
		Χ	Fehler Busversorgungsspannung				
X	ZHz	X					
			Fehler Kanal x				
			Signal liegt außerhalb des MessbereichsFehler in der Parametrierung				
nicht relevan	t: X						

031-1BD30 - AI 4x12Bit 0...10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	+AI 2	E	+ Kanal 2
4	-AI 2	E	Masse Kanal 2
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	+AI 3	E	+ Kanal 3
8	-AI 3	E	Masse Kanal 3

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	AI 3	2	Analogwert Kanal 3	6401h/s+3	04h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

031-1BD30 - AI 4x12Bit 0...10V > Technische Daten

3.10.1 Technische Daten

Artikelnr.	031-1BD30
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0404 15C4
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	75 mA
Verlustleistung	0,7 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Spannungseingänge	✓
min. Eingangswiderstand im Spannungsbereich	100 kΩ
Eingangsspannungsbereiche	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,3%
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	+/-0,2%
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	max. 30V
Stromeingänge	-
max. Eingangswiderstand im Strombereich	-
Eingangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	-
Zerstörgrenze Stromeingänge (Strom)	-
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche mit SFU Zerstörgrenze Widerstandseingänge	-

031-1BD30 - Al 4x12Bit 0...10V > Technische Daten

Artikelnr.	031-1BD30
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	,
Temperaturkompensation intern	
Temperaturfehler der internen Kompensation	
Technische Einheit der Temperaturmessung	
Auflösung in Bit	12
Messprinzip	sukzessive Approximation
Grundwandlungszeit	4 ms alle Kanäle
Störspannungsunterdrückung für Frequenz	>50dB bei 50Hz (UCM<2V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-

031-1BD30 - AI 4x12Bit 0...10V > Parametrierdaten

Artikelnr.	031-1BD30
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 2 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	8
Ausgangsbytes	0
Parameterbytes	8
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	59 g
Gewicht inklusive Zubehör	59 g
Gewicht Brutto	74 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

3.10.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

031-1BD30 - AI 4x12Bit 0...10V > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
CH0FN	1	Funktionsnummer Kanal 0	10h	80h	3100h	01h
CH1FN	1	Funktionsnummer Kanal 1	10h	81h	3101h	02h
CH2FN	1	Funktionsnummer Kanal 2	10h	82h	3102h	03h
CH3FN	1	Funktionsnummer Kanal 3	10h	83h	3103h	04h

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(U)	(D)				
0 10V	11,76V	32511	7EFFh	Übersteuerung	D = 27649	
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$	
(10h)	5V	13824	3600h			
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$	
	-1,76V	-4864	ED00h	Untersteuerung	27048	
0 10V	12,5V	20480	5000h	Übersteuerung	D 16294 U	
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$	
(20h)	5V	8192	2000h			
	0V	0	0000h		$U = D \cdot \frac{10}{16224}$	
	-2V	-3277	F333h	Untersteuerung	16384	

3.10.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnose-daten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

031-1BD30 - AI 4x12Bit 0...10V > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	■ Bit 0: gesetzt, wenn Baugruppenstörung
	■ Bit 1: gesetzt bei Fehler intern
	■ Bit 2: gesetzt, bei Fehler extern
	■ Bit 3: gesetzt, bei Kanalfehler vorhanden
	■ Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung
	■ Bit 6 5: reserviert
	■ Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	■ Bit 3 0: Modulklasse – 0101b Analogbaugruppe
	Bit 4: Kanalinformation vorhandenBit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	■ Bit 2 0: reserviert
	■ Bit 3: gesetzt bei internem Diagnosepufferüberlauf
	■ Bit 4: gesetzt bei internem Kommunikationsfehler
	■ Bit 7 5: reserviert

031-1BD30 - AI 4x12Bit 0...10V > Diagnosedaten

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0			
0	Kanalspezifische Fehler: Kanal x:			
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 5 1: reserviert Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung 			

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

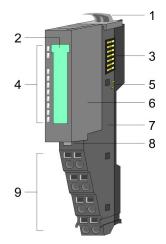
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

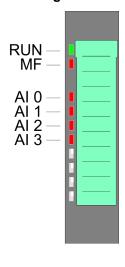
Im SLIO-Modul befindet sich ein 32-Bit Timer (µs-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1µs wieder bei 0 beginnt.

031-1BD40 - AI 4x12Bit 0(4)...20mA


3.11 031-1BD40 - AI 4x12Bit 0(4)...20mA

Eigenschaften

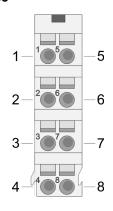
Das Elektronikmodul besitzt 4 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

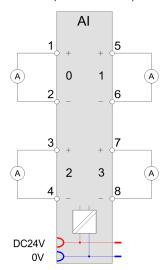

- 4 analoge Eingänge
- Geeignet für Geber mit 0 ... 20mA;
 - 4 ... 20mA mit externer Versorgung
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x ☐ rot	Beschreibung
•		x	Bus-Kommunikation ist OK Modul-Status ist OK
•	•	X	Bus-Kommunikation ist OK Modul-Status meldet Fehler
	•	x	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler <i>∜</i> Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			Signal liegt außerhalb des MessbereichsFehler in der Parametrierung
nicht relevant: X			

031-1BD40 - AI 4x12Bit 0(4)...20mA

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	+AI 2	E	+ Kanal 2
4	-AI 2	E	Masse Kanal 2
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	+AI 3	Е	+ Kanal 3
8	-AI 3	E	Masse Kanal 3

E: Eingang

Bei Einsatz von 2-Draht-Messumformern ist in die Messleitung eine externe Spannungsversorgung einzuschleifen.

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

031-1BD40 - AI 4x12Bit 0(4)...20mA > Technische Daten

Adr.	Name	Bytes	Funktion	IX	SX
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	AI 3	2	Analogwert Kanal 3	6401h/s+3	04h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.11.1 Technische Daten

Artikelnr.	031-1BD40
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0405 15C4
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	75 mA
Verlustleistung	0,7 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Spannungseingänge	-
min. Eingangswiderstand im Spannungsbereich	-
Eingangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	-
Stromeingänge	✓
max. Eingangswiderstand im Strombereich	110 Ω
Eingangsstrombereiche	0 mA +20 mA
	+4 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-0,3% +/-0,5%
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	+/-0,2% +/-0,3%
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	max. 24V
Zerstörgrenze Stromeingänge (Strom)	max. 40mA

031-1BD40 - AI 4x12Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1BD40
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	12
Messprinzip	sukzessive Approximation
Grundwandlungszeit	4 ms alle Kanäle
Störspannungsunterdrückung für Frequenz	>50dB bei 50Hz (UCM<2V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein

031-1BD40 - Al 4x12Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1BD40
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	
zwischen den Kanälen in Gruppen zu	
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 2 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	8
Ausgangsbytes	0
Parameterbytes	8
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	60 g
Gewicht inklusive Zubehör	60 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	

031-1BD40 - AI 4x12Bit 0(4)...20mA > Parametrierdaten

Artikelnr.	031-1BD40
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

3.11.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3100h	01h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	3101h	02h
CH2FN	1	Funktionsnummer Kanal 2	31h	82h	3102h	03h
CH3FN	1	Funktionsnummer Kanal 3	31h	83h	3103h	04h

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

031-1BD40 - AI 4x12Bit 0(4)...20mA > Diagnosedaten

0(4) ... 20mA

Messbereich	Strom	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(I)	(D)				
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{I}{20}$	
Siemens	20mA	27648	6C00h	Nennbereich		
S7-Format	10mA	13824	3600h			
(31h)	0mA	0	0000h		$I = D \cdot \frac{20}{27648}$	
	-3,52mA	-4864	ED00h	Untersteuerung	27648	
0 20mA	25,00mA	20480	5000h	Übersteuerung	D 16204 I	
Siemens	20mA	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{1}{20}$	
S5-Format	10mA	8192	2000h			
(41h)	0mA	0	0000h		$I = D \cdot \frac{20}{16384}$	
	-4,00mA	-3277	F333h	Untersteuerung	16384	
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{I-4}{16}$	
Siemens	20mA	27648	6C00h	Nennbereich	16	
S7-Format	12mA	13824	3600h		$I = D \cdot \frac{16}{27648} + 4$	
(30h)	4mA	0	0000h		$T = D \cdot \frac{1}{27648} + 4$	
	1,19mA	-4864	ED00h	Untersteuerung		
4 20mA	24,00mA	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{I-4}{16}$	
Siemens	20mA	16384	4000h	Nennbereich	16	
S5-Format	12mA	8192	2000h			
(40h)	4mA	0	0000h		$I = D \cdot \frac{16}{16384} + 4$	
	0,8mA	-3277	F333h	Untersteuerung		

3.11.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

031-1BD40 - AI 4x12Bit 0(4)...20mA > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: reserviert Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

031-1BD40 - AI 4x12Bit 0(4)...20mA > Diagnosedaten

CHTYP Kanaltyp

Byte
0

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 5 1: reserviert Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

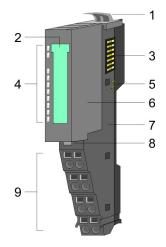
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

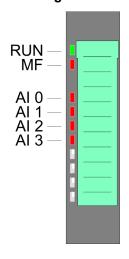
Im SLIO-Modul befindet sich ein 32-Bit Timer (µs-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1µs wieder bei 0 beginnt.

031-1BD70 - AI 4x12Bit ±10V


3.12 031-1BD70 - AI 4x12Bit ±10V

Eigenschaften

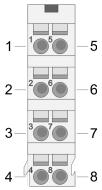
Das Elektronikmodul besitzt 4 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

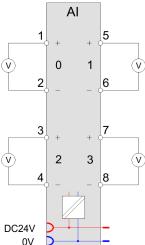

- 4 analoge Eingänge
- Geeignet für Geber mit ±10V, 0 ... 10V
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN	MF	Al x	Beschreibung		
grün	rot	rot	Describing		
		X	Bus-Kommunikation ist OK		
		^	Modul-Status ist OK		
		X	Bus-Kommunikation ist OK		
_	_	^	Modul-Status meldet Fehler		
		X	Bus-Kommunikation nicht möglich		
		^	Modul-Status meldet Fehler		
		Χ	Fehler Busversorgungsspannung		
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30		
			Fehler Kanal x		
			Signal liegt außerhalb des MessbereichsFehler in der Parametrierung		
nicht relevant: X					

031-1BD70 - AI 4x12Bit ±10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	+AI 2	E	+ Kanal 2
4	-AI 2	E	Masse Kanal 2
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	+AI 3	E	+ Kanal 3
8	-AI 3	Е	Masse Kanal 3

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	Al 3	2	Analogwert Kanal 3	6401h/s+3	04h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

031-1BD70 - AI 4x12Bit ±10V > Technische Daten

3.12.1 Technische Daten

Artikelnr.	031-1BD70
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0409 15C4
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	55 mA
Verlustleistung	0,5 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Spannungseingänge	✓
min. Eingangswiderstand im Spannungsbereich	100 kΩ
Eingangsspannungsbereiche	-10 V +10 V
	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,3%
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	+/-0,2%
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	max. 30V
Stromeingänge	-
max. Eingangswiderstand im Strombereich	-
Eingangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	-
Zerstörgrenze Stromeingänge (Strom)	-
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-

031-1BD70 - AI 4x12Bit ±10V > Technische Daten

Artikelnr.	031-1BD70
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	12
Messprinzip	sukzessive Approximation
Grundwandlungszeit	4 ms alle Kanäle
Störspannungsunterdrückung für Frequenz	>50dB bei 50Hz (UCM<2V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-

031-1BD70 - AI 4x12Bit ±10V > Technische Daten

Artikelnr.	031-1BD70
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 2 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	8
Ausgangsbytes	0
Parameterbytes	8
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	60 g
Gewicht inklusive Zubehör	60 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1BD70 - AI 4x12Bit ±10V > Parametrierdaten

3.12.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
CH0FN	1	Funktionsnummer Kanal 0	12h	80h	3100h	01h
CH1FN	1	Funktionsnummer Kanal 1	12h	81h	3101h	02h
CH2FN	1	Funktionsnummer Kanal 2	12h	82h	3102h	03h
CH3FN	1	Funktionsnummer Kanal 3	12h	83h	3103h	04h

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

±10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(U)	(D)				
±10V	11,76V	32511	7EFFh	Übersteuerung	D 27649 U	
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$	
(12h)	5V	13824	3600h		10	
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$	
	-5V	-13824	CA00h		2/048	
	-10V	-27648	9400h			
	-11,76V	-32512	8100h	Untersteuerung		
±10V	12,5V	20480	5000h	Übersteuerung	D 16294 U	
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$	
(22h)	5V	8192	2000h			
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$	
	-5V	-8192	E000h		16384	
	-10V	-16384	C000h			
	-12,5V	-20480	B000h	Untersteuerung		

031-1BD70 - AI 4x12Bit ±10V > Diagnosedaten

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(10h)	5V	13824	3600h		10
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-1,76V	-4864	ED00h	Untersteuerung	27046
0 10V	12,5V	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{U}{10}$
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 10384 \cdot \frac{10}{10}$
(20h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$
	-2V	-3277	F333h	Untersteuerung	16384

3.12.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h

031-1BD70 - AI 4x12Bit ±10V > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	■ Bit 2 0: reserviert
	■ Bit 3: gesetzt bei internem Diagnosepufferüberlauf
	■ Bit 4: gesetzt bei internem Kommunikationsfehler
	■ Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

031-1BD70 - AI 4x12Bit ±10V > Diagnosedaten

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 5 1: reserviert Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

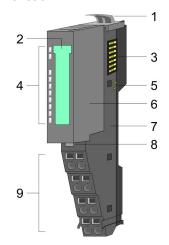
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

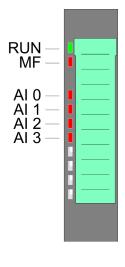
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1BD80 - AI 4x16Bit R/RTD


3.13 031-1BD80 - AI 4x16Bit R/RTD

Eigenschaften

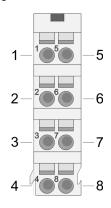
Das Elektronikmodul besitzt 4 Eingänge für Widerstandsgeber, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt.

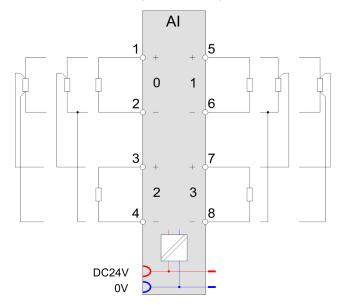

- 4 analoge Eingänge
- Geeignet f
 ür Widerstandsgeber 0 ... 3000Ω und Widerstandstemperaturgeber Pt100, Pt1000, NI100 und NI1000
- Widerstandsmessung 2-, 3- und 4-Leiter
 (3- und 4-Leiter ausschließlich über Kanal 0 bzw. 1)
- Alarm- und Diagnosefunktion
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




MF rot	Al x ■ rot	Beschreibung
	x	Bus-Kommunikation ist OK
•	X	Modul-Status ist OK Bus-Kommunikation ist OK Modul-Status meldet Fehler
	х	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
	X	Fehler Busversorgungsspannung
ZHz	X	Konfigurationsfehler <i>∜</i> Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
	•	Fehler Kanal x Signal liegt außerhalb des Messbereichs Fehler in der Parametrierung Drahtbruch (falls parametriert)
	rot	rot Trot X X X X ZHz X

031-1BD80 - AI 4x16Bit R/RTD

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	+AI 2	E	+ Kanal 2
4	-AI 2	E	Masse Kanal 2
5	+AI 1	Е	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	+AI 3	Е	+ Kanal 3
8	-AI 3	Е	Masse Kanal 3

E: Eingang

031-1BD80 - AI 4x16Bit R/RTD

2-, 3-, 4-Leiter-Messung

Der Anschlussbelegung oben können Sie entnehmen, wie Sie ihre Sensoren bei 2-, 3-bzw. 4-Leiter-Messung anzuschließen haben.

- Mit allen Kanälen können Sie eine 2-Leiter-Messung durchführen.
- Eine 3-Leiter-Messung ist nur an den Kanälen 0 und 1 möglich.
 - Bitte beachten Sie, dass Sie bei der 3-Leiter-Messung immer den jeweils korrespondierenden Kanal in der Parametrierung zu deaktivieren haben. Der korrespondierende Kanal von Kanal 0 ist Kanal 2 und von Kanal 1 der Kanal 3. Unbenutzte Kanäle sind in der Parametrierung immer zu deaktivieren.
- Eine 4-Leiter-Messung ist nur an den Kanälen 0 und 1 möglich.
 - Der Messstrom für Kanal 0 wird auf den Pins 1 und 2 ausgegeben. Die Messung für Kanal 0 findet an den Pins 3 und 4 statt. Der Analogwert für Kanal 0 wird im EW 0 dargestellt.
 - Der Messstrom für Kanal 1 wird auf den Pins 5 und 6 ausgegeben. Die Messung für Kanal 1 findet an den Pins 7 und 8 statt. Der Analogwert für Kanal 1 wird im EW 1 dargestellt.
 - Bitte beachten Sie, dass Sie bei der 4-Leiter-Messung immer den jeweils korrespondierenden Kanal in der Parametrierung zu deaktivieren haben. Der korrespondierende Kanal von Kanal 0 ist Kanal 2 und von Kanal 1 der Kanal 3. Unbenutzte Kanäle sind in der Parametrierung immer zu deaktivieren.

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	Al 3	2	Analogwert Kanal 3	6401h/s+3	04h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

031-1BD80 - AI 4x16Bit R/RTD > Technische Daten

3.13.1 Technische Daten

Artikelnr.	031-1BD80
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0406 1544
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	85 mA
Verlustleistung	1 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	30 mA
Spannungseingänge	
min. Eingangswiderstand im Spannungsbereich	
Eingangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	
Grundfehlergrenze Spannungsbereiche	
Grundfehlergrenze Spannungsbereiche mit SFU	
Zerstörgrenze Spannung	
Stromeingänge	,
max. Eingangswiderstand im Strombereich	-
Eingangsstrombereiche	
Gebrauchsfehlergrenze Strombereiche	
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	-
Zerstörgrenze Stromeingänge (Strom)	-
Widerstandseingänge	✓
Widerstandsbereiche	0 60 Ohm 0 600 Ohm 0 3000 Ohm
Gebrauchsfehlergrenze Widerstandsbereiche	+/- 0,4 %
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	+/- 0,2 %
Grundfehlergrenze Widerstandsbereiche	+/- 0,2 %
Grundfehlergrenze Widerstandsbereiche mit SFU	+/- 0,1 %

031-1BD80 - AI 4x16Bit R/RTD > Technische Daten

Artikelnr.	031-1BD80
Zerstörgrenze Widerstandseingänge	max. 24V
Widerstandsthermometereingänge	✓
Widerstandsthermometerbereiche	Pt100
	Pt1000
	Ni100
	Ni1000
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	+/- 0,4 %
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	+/- 0,2 %
Grundfehlergrenze Widerstandsthermometerbereiche	+/- 0,2 %
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	+/- 0,1 %
Zerstörgrenze Widerstandsthermometereingänge	max. 24V
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	°C, °F, K
Auflösung in Bit	16
Messprinzip	Sigma-Delta
Grundwandlungszeit	4,2324,1 ms (50 Hz) 3,8270,5 ms (60 Hz) pro Kanal
Störspannungsunterdrückung für Frequenz	>80dB bei 50Hz (UCM<6V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja, parametrierbar
Prozessalarm	ja, parametrierbar
Diagnosealarm	ja, parametrierbar
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	

031-1BD80 - AI 4x16Bit R/RTD > Technische Daten

Artikelnr.	031-1BD80
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	-
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 6 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	8
Ausgangsbytes	0
Parameterbytes	34
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g
Gewicht inklusive Zubehör	61 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

SFU: Störfrequenzunterdrückung

031-1BD80 - AI 4x16Bit R/RTD > Parametrierdaten

3.13.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose ¹	00h	00h	3100h	01h
WIBRK_EN	1	Drahtbrucherkennung ¹	00h	00h	3101h	02h
LIMIT_EN	1	Grenzwertüberwachung ¹	00h	00h	3102h	03h
RES3	1	reserviert	00h	00h	3103h	04h
TEMPCNF	1	Temperatursystem	00h	01h	3104h	05h
SUPR	1	Störfrequenzunterdrückung (SFU)	02h	01h	3105h	06h
CH0FN	1	Funktionsnummer Kanal 0	50h	80h	3106h	07h
CH0FO	1	Funktionsoption Kanal 0	00h	80h	3107h	08h
CH0UL	2	Oberer Grenzwert Kanal 0	7FFFh	80h	3108h3109 h	09h
CH0LL	2	Unterer Grenzwert Kanal 0	8000h	80h	310Ah310B h	0Ah
CH1FN	1	Funktionsnummer Kanal 1	50h	81h	310Ch	0Bh
CH1FO	1	Funktionsoption Kanal 1	00h	81h	310Dh	0Ch
CH1UL	2	Oberer Grenzwert Kanal 1	7FFFh	81h	310Eh310F h	0Dh
CH1LL	2	Unterer Grenzwert Kanal 1	8000h	81h	3110h3111h	0Eh
CH2FN	1	Funktionsnummer Kanal 2	50h ²	82h	3112h	0Fh
CH2FO	1	Funktionsoption Kanal 2	00h	82h	3113h	10h
CH2UL	2	Oberer Grenzwert Kanal 2	7FFFh	82h	3114h3115h	11h
CH2LL	2	Unterer Grenzwert Kanal 2	8000h	82h	3116h3117h	12h
CH3FN	1	Funktionsnummer Kanal 3	50h ²	83h	3118h	13h
CH3FO	1	Funktionsoption Kanal 3	00h	83h	3119h	14h
CH3UL	2	Oberer Grenzwert Kanal 3	7FFFh	83h	311Ah311B h	15h
CH3LL	2	Unterer Grenzwert Kanal 3	8000h	83h	311Ch311D h	16h

¹⁾ Diesen Datensatz dürfen Sie ausschließlich im STOP-Zustand übertragen.

²⁾ Im 2-Kanal-Betrieb FFh

031-1BD80 - AI 4x16Bit R/RTD > Parametrierdaten

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm00h: sperren40h: freigeben

■ Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

WIBRK_EN Drahtbrucherkennung

Byte	Bit 7 0			
0	 Bit 0: Drahtbrucherkennung Kanal 0 (1: an) Bit 1: Drahtbrucherkennung Kanal 1 (1: an) Bit 2: Drahtbrucherkennung Kanal 2 (1: an) Bit 3: Drahtbrucherkennung Kanal 3 (1: an) Bit 7 4: reserviert 			

LIMIT_EN Grenzwert-überwachung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberwachung Kanal 0 (1: an) Bit 1: Grenzwertüberwachung Kanal 1 (1: an) Bit 2: Grenzwertüberwachung Kanal 2 (1: an) Bit 3: Grenzwertüberwachung Kanal 3 (1: an) Bit 7 4: reserviert

TEMPCNF Temperatur- system

Byte	Bit 7 0
0	■ Bit 0, 1: Temperatursystem - 00: °C - 01: °F - 10: K ■ Bit 7 2: reserviert

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 0, 1: Störfrequenzunterdrückung 01: 60Hz 10: 50Hz Bit 7 2: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert.

Messbereich	Messwert	Signalbereich	Bereich
(FktNr.)			
2-Leiter: PT100	+1000°C	+10000	Übersteuerung
(50h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung

031-1BD80 - AI 4x16Bit R/RTD > Parametrierdaten

Messbereich	Messwert	Signalbereich	Bereich
(FktNr.)			
2-Leiter: PT1000	+1000°C	+10000	Übersteuerung
(51h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
2-Leiter: NI100	+295°C	+2950	Übersteuerung
(52h)	-60 +250°C	-600 + 2500	Nennbereich
	-105°C	-1050	Untersteuerung
2-Leiter: NI1000	+295°C	+2950	Übersteuerung
(53h)	-60 +250°C	-600 + 2500	Nennbereich
	-105°C	-1050	Untersteuerung
3-Leiter: PT100	+1000°C	+10000	Übersteuerung
(58h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
3-Leiter: PT1000	+1000°C	+10000	Übersteuerung
(59h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
3-Leiter: NI100	+295°C	+2950	Übersteuerung
(5Ah)	-60 +250°C	-600 + 2500	Nennbereich
	-105°C	-1050	Untersteuerung
3-Leiter: NI1000	+295°C	+2950	Übersteuerung
(5Bh)	-60 +250°C	-600 + 2500	Nennbereich
	-105°C	-1050	Untersteuerung
4-Leiter: PT100	+1000°C	+10000	Übersteuerung
(60h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
4-Leiter: PT1000	+1000°C	+10000	Übersteuerung
(61h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
4-Leiter: NI100	+295°C	+2950	Übersteuerung
(62h)	-60 +250°C	-600 + 2500	Nennbereich
	-105°C	-1050	Untersteuerung
4-Leiter: NI1000	+295°C	+2950	Übersteuerung
(63h)	-60 +250°C	-600 +2500	Nennbereich
	-105°C	-1050	Untersteuerung
2-Leiter: 0 60Ω			Übersteuerung
(70h)	0 60Ω	0 32767	Nennbereich

031-1BD80 - AI 4x16Bit R/RTD > Parametrierdaten

Messbereich	Messwert	Signalbereich	Bereich
(FktNr.)			
			Untersteuerung
2-Leiter: 0 600Ω			Übersteuerung
(71h)	$0 \dots 600\Omega$	0 32767	Nennbereich
			Untersteuerung
2-Leiter: 0 3000Ω			Übersteuerung
(72h)	$0 \dots 3000 \Omega$	0 32767	Nennbereich
			Untersteuerung
3-Leiter: 0 60Ω			Übersteuerung
(78h)	0 60Ω	0 32767	Nennbereich
			Untersteuerung
3-Leiter: 0 600Ω			Übersteuerung
(79h)	$0 \dots 600\Omega$	0 32767	Nennbereich
			Untersteuerung
3-Leiter: 0 3000Ω			Übersteuerung
(7Ah)	$0 \dots 3000\Omega$	0 32767	Nennbereich
			Untersteuerung
4-Leiter: 0 60Ω			Übersteuerung
(80h)	0 60Ω	0 32767	Nennbereich
			Untersteuerung
4-Leiter: 0 600Ω			Übersteuerung
(81h)	$0 \dots 600\Omega$	0 32767	Nennbereich
			Untersteuerung
4-Leiter: 0 3000Ω			Übersteuerung
(82h)	$0 \dots 3000\Omega$	0 32767	Nennbereich
			Untersteuerung
2-Leiter: 0 60Ω			Übersteuerung
(90h)	0 60Ω	0 6000	Nennbereich
			Untersteuerung
2-Leiter: 0 600Ω			Übersteuerung
(91h)	$0 \dots 600\Omega$	0 6000	Nennbereich
			Untersteuerung
2-Leiter: 0 3000Ω			Übersteuerung
(92h)	$0 \dots 3000\Omega$	0 30000	Nennbereich
			Untersteuerung
3-Leiter: 0 60Ω			Übersteuerung

031-1BD80 - AI 4x16Bit R/RTD > Parametrierdaten

Messbereich	Messwert	Signalbereich	Bereich
(FktNr.)			
(98h)	0 60Ω	0 6000	Nennbereich
			Untersteuerung
3-Leiter: 0 600Ω			Übersteuerung
(99h)	0 600Ω	0 6000	Nennbereich
			Untersteuerung
3-Leiter: 0 3000Ω			Übersteuerung
(9Ah)	$0 \dots 3000\Omega$	0 30000	Nennbereich
			Untersteuerung
4-Leiter: $0 \dots 60\Omega$			Übersteuerung
(A0h)	0 60Ω	0 6000	Nennbereich
			Untersteuerung
4-Leiter: 0 600Ω			Übersteuerung
(A1h)	$0 \dots 600\Omega$	0 6000	Nennbereich
			Untersteuerung
4-Leiter: 0 3000Ω			Übersteuerung
(A2h)	$0 \dots 3000\Omega$	0 30000	Nennbereich
			Untersteuerung
2-Leiter: 0 60Ω	$70,55\Omega$	32511	Übersteuerung
(D0h)	0 60Ω	0 27648	Nennbereich
			Untersteuerung
2-Leiter: 0 600Ω	$705,5\Omega$	32511	Übersteuerung
(D1h)	0 600Ω	0 27648	Nennbereich
			Untersteuerung
2-Leiter: 0 3000Ω	3528Ω	32511	Übersteuerung
(D2h)	$0 \dots 3000\Omega$	0 27648	Nennbereich
			Untersteuerung
3-Leiter: 0 60Ω	$70,55\Omega$	32511	Übersteuerung
(D8h)	0 60Ω	0 27648	Nennbereich
			Untersteuerung
3-Leiter: 0 600Ω	$705,5\Omega$	32511	Übersteuerung
(D9h)	$0 \dots 600\Omega$	0 27648	Nennbereich
			Untersteuerung
3-Leiter: 0 3000Ω	3528Ω	32511	Übersteuerung
(DAh)	$0 \dots 3000\Omega$	0 27648	Nennbereich
			Untersteuerung

031-1BD80 - AI 4x16Bit R/RTD > Parametrierdaten

Messbereich (FktNr.)	Messwert	Signalbereich	Bereich
4-Leiter: $0 \dots 60\Omega$	$70,55\Omega$	32511	Übersteuerung
(E0h)	0 60Ω	0 27648	Nennbereich
			Untersteuerung
4-Leiter: 0 600Ω	705,5Ω	32511	Übersteuerung
(E1h)	$0 \dots 600\Omega$	0 27648	Nennbereich
			Untersteuerung
4-Leiter: 0 3000Ω	3528Ω	32511	Übersteuerung
(E2h)	$0 \dots 3000\Omega$	0 27648	Nennbereich
			Untersteuerung

CHxFO Funktionsoption Kanal x

Hier können Sie abhängig von der Störfrequenzunterdrückung für jeden Kanal die Wandlergeschwindigkeit einstellen.

Wandlungszeit (in ms) / Kanal bei Störfrequenzunterdrückung		
50Hz	60Hz	
324,1	270,5	
164,2	137,2	
84,2	70,5	
44,1	37,2	
24,2	20,5	
14,2	12,2	
9,2	8,0	
6,6	5,9	
4,2	3,8	
	50Hz 324,1 164,2 84,2 44,1 24,2 14,2 9,2 6,6	

^{*)} Für Code 00h, 01h und 02h gelten die Toleranzangaben in den technischen Daten "mit Störfrequenzunterdrückung".

CHxUL / CHxLL Kanal x

Sie können für jeden Kanal einen *Oberen* bzw. *Unteren Grenzwert* definieren. Hierbei können Sie ausschließlich Werte aus dem Nennbereich vorgeben, ansonsten erhalten Sie einen Parametrierfehler. Durch Angabe von 7FFFh für den oberen bzw. 8000h für den unteren Grenzwert wird der entsprechende Grenzwert deaktiviert.

Sobald sich Ihr Messwert außerhalb eines Grenzwerts befindet und Sie die Grenzwertüberwachung aktiviert haben, wird ein Prozessalarm ausgelöst.

031-1BD80 - AI 4x16Bit R/RTD > Diagnose und Alarm

3.13.3 Diagnose und Alarm

Auslöser	Prozessalarm	Diagnosealarm	parametrierbar
Projektierungs-/	-	X	-
Parametrierungsfehler			
Drahtbruch	-	X	X
Messbereichsüberschreitung	-	X	-
Messbereichsunterschreitung	-	X	-
Grenzwertüberschreitung	X	-	X
Grenzwertunterschreitung	X	-	X
Diagnosepufferüberlauf	-	X	-
Kommunikationsfehler	-	X	-
Prozessalarm verloren	-	X	-

Prozessalarmdaten

Damit Sie auf asynchrone Ereignisse reagieren können, haben Sie die Möglichkeit Prozessalarme zu aktivieren. Ein Prozessalarm unterbricht den linearen Programmablauf und verzweigt je nach Master-System in eine bestimmte Interrupt-Routine. Hier können Sie entsprechend auf den Prozessalarm reagieren.

Bei CANopen werden die Prozessalarmdaten über ein Emergency-Telegramm übertragen.

Bei Zugriff über CPU, PROFIBUS und PROFINET erfolgt die Übertragung der Prozessalarmdaten mittels Diagnosetelegramm.

SX - Subindex für Zugriff über EtherCAT mit Index 5000h

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	SX
PRIT_OL	1	Oberer Grenzwert Kanal x überschritten	00h	02h
PRIT_UL	1	Unterer Grenzwert Kanal x überschritten	00h	03h
PRIT_US	2	μs-Ticker	00h	04h (High-Byte) 05h (Low-Byte)

PRIT_OL Grenzwertüberschreitung

Byte	Bit 7 0	
0	■ Bit 0: Grenzwertüberschreitung Kanal 0	
	•	
	■ Bit 3: Grenzwertüberschreitung Kanal 3	
	■ Bit 7 4: reserviert	

PRIT_UL Grenzwertunterschreitung

Byte	Bit 7 0		
0	Bit 0: Grenzwertunterschreitung Kanal 0		
	Bit 3: Grenzwertunterschreitung Kanal 3Bit 7 4: reserviert		

031-1BD80 - AI 4x16Bit R/RTD > Diagnose und Alarm

PRIT_US µs-Ticker

Byte	Bit 7 0
01	Wert des µs-Ticker bei Auftreten des Prozessalarms

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} -1 μ s wieder bei 0 beginnt. PRIT_US repräsentiert die unteren 2 Byte des μ s-Ticker-Werts (0 ... 2^{16} -1).

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose kommend bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm gehend. Wurde für einen Kanal ein Diagnosealarm kommend wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm gehend verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm kommend bis letzter Diagnosealarm gehend) leuchtet die MF-LED des Moduls.

- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh

031-1BD80 - AI 4x16Bit R/RTD > Diagnose und Alarm

Name	Bytes	Funktion	Default	DS	IX	SX
CH4ERR CH7ERR	4	reserviert	00h			0Eh11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	■ Bit 3 0: Modulklasse
	- 0101b Analogbaugruppe
	Bit 4: Kanalinformation vorhanden
	Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	Bit 2 0: reserviertBit 3: gesetzt bei internem Diagnosepufferüberlauf
	Bit 3: gesetzt bei internem Kommunikationsfehler
	Bit 5: reserviert
	Bit 6: gesetzt bei Prozessalarm verlorenBit 7: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 ■ Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler ■ Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

031-1BD80 - AI 4x16Bit R/RTD > Diagnose und Alarm

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR / CH3ERR kanalspezifisch

Byte	Bit 7 0						
0	Kanalspezifische Fehler: Kanal x:						
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 3 1: reserviert Bit 4: gesetzt bei Drahtbruch Bit 5: gesetzt bei Prozessalarm verloren Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung 						

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

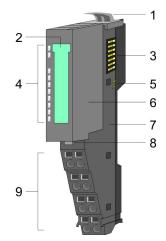
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

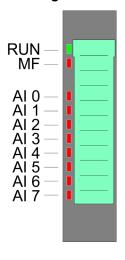
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1BF60 - AI 8x12Bit 0(4)...20mA


3.14 031-1BF60 - AI 8x12Bit 0(4)...20mA

Eigenschaften

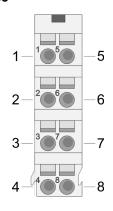
Das Elektronikmodul besitzt 8 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt.

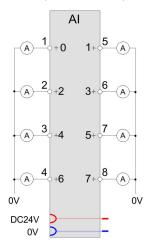

- 8 analoge Single-Ended Eingänge (Bezugspotential 0V)
- Geeignet für Geber 0(4) ... 20mA mit externer Versorgung
- Parametrierbare Störfrequenzunterdrückung (50/60Hz)
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x ■ rot	Beschreibung		
•		X	Bus-Kommunikation ist OK Modul-Status ist OK		
•	•	X	Bus-Kommunikation ist OK Modul-Status meldet Fehler		
	•	X	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler		
		Χ	Fehler Busversorgungsspannung		
X	ZHz	X	Konfigurationsfehler & Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30		
•		•	Fehler Kanal x ■ Signal liegt außerhalb des Messbereichs ■ Fehler in der Parametrierung		
nicht relevant: X					

031-1BF60 - AI 8x12Bit 0(4)...20mA

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	+AI 2	E	+ Kanal 2
3	+AI 4	E	+ Kanal 4
4	+AI 6	E	+ Kanal 6
5	+AI 1	E	+ Kanal 1
6	+AI 3	E	+ Kanal 3
7	+AI 5	E	+ Kanal 5
8	+AI 7	E	+ Kanal 7

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	Al 3	2	Analogwert Kanal 3	6401h/s+3	04h
+8	Al 4	2	Analogwert Kanal 4	6401h/s+4	05h
+10	AI 5	2	Analogwert Kanal 5	6401h/s+5	06h

031-1BF60 - AI 8x12Bit 0(4)...20mA > Technische Daten

Adr.	Name	Bytes	Funktion	IX	SX
+12	Al 6	2	Analogwert Kanal 6	6401h/s+6	07h
+14	Al 7	2	Analogwert Kanal 7	6401h/s+7	08h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.14.1 Technische Daten

Artikelnr.	031-1BF60
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0416 15C5
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	70 mA
Verlustleistung	1 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	8
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Spannungseingänge	-
min. Eingangswiderstand im Spannungsbereich	-
Eingangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	-
Stromeingänge	✓
max. Eingangswiderstand im Strombereich	60 Ω
Eingangsstrombereiche	0 mA +20 mA
	+4 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-1,1%
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	+/-1,0%
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	max. 30V

031-1BF60 - AI 8x12Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1BF60
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	12
Messprinzip	sukzessive Approximation
Grundwandlungszeit	1,1 ms alle Kanäle
Störspannungsunterdrückung für Frequenz	>50dB bei 50Hz (UCM<2V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein

031-1BF60 - AI 8x12Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1BF60
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	-
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Technische Daten Geberversorgung	
Anzahl Ausgänge	-
Ausgangsspannung (typ)	-
Ausgangsspannung (Nennwert)	-
Kurzschlussschutz	-
Potenzialbindung	-
Datengrößen	
Eingangsbytes	16
Ausgangsbytes	0
Parameterbytes	14
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	58 g
Gewicht inklusive Zubehör	58 g

031-1BF60 - AI 8x12Bit 0(4)...20mA > Parametrierdaten

Artikelnr.	031-1BF60		
Gewicht Brutto	73 g		
Umgebungsbedingungen			
Betriebstemperatur	0 °C bis 60 °C		
Lagertemperatur	-25 °C bis 70 °C		
Zertifizierungen			
Zertifizierung nach UL	ja		
Zertifizierung nach KC	ja		

3.14.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
SUPR	2	Störfrequenzunterdrückung (SFU)	0000h	01h	3100h, 3101h	01h
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3102h	02h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	3103h	03h
CH2FN	1	Funktionsnummer Kanal 2	31h	82h	3104h	04h
CH3FN	1	Funktionsnummer Kanal 3	31h	83h	3105h	05h
CH4FN	1	Funktionsnummer Kanal 4	31h	84h	3106h	06h
CH5FN	1	Funktionsnummer Kanal 5	31h	85h	3107h	07h
CH6FN	1	Funktionsnummer Kanal 6	31h	86h	3108h	08h
CH7FN	1	Funktionsnummer Kanal 7	31h	87h	3109h	09h

SUPR Störfrequenzunterdrückung (SFU)

Byte B	3it 15 0
0	Bit 0, 1: Störfrequenzunterdrückung Kanal 0 Bit 2, 3: Störfrequenzunterdrückung Kanal 1 Bit 4, 5: Störfrequenzunterdrückung Kanal 2 Bit 6, 7: Störfrequenzunterdrückung Kanal 3 Bit 8, 9: Störfrequenzunterdrückung Kanal 4 Bit 10, 11: Störfrequenzunterdrückung Kanal 5 Bit 12, 13: Störfrequenzunterdrückung Kanal 6 Bit 14, 15: Störfrequenzunterdrückung Kanal 7 — 00: deaktiviert — 01: 60Hz — 10: 50Hz

031-1BF60 - AI 8x12Bit 0(4)...20mA > Diagnosedaten

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

0(4) ... 20mA

Messbereich	Strom	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(I)	(D)				
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	D 27649 I	
Siemens	20mA	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{1}{20}$	
S7-Format	10mA	13824	3600h			
(31h)	0mA	0	0000h		$I = D \cdot \frac{20}{27648}$	
	-3,52mA	-4864	ED00h	Untersteuerung	27648	
0 20mA	25,00mA	20480	5000h	Übersteuerung	D 16204 I	
Siemens	20mA	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{I}{20}$	
S5-Format	10mA	8192	2000h			
(41h)	0mA	0	0000h		$I = D \cdot \frac{20}{16384}$	
	-4,00mA	-3277	F333h	Untersteuerung	16384	
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{I-4}{16}$	
Siemens	20mA	27648	6C00h	Nennbereich	D = 27048 · 16	
S7-Format	12mA	13824	3600h			
(30h)	4mA	0	0000h		$I = D \cdot \frac{16}{27648} + 4$	
	1,19mA	-4864	ED00h	Untersteuerung		
4 20mA	24,00mA	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{I-4}{16}$	
Siemens	20mA	16384	4000h	Nennbereich	$D = 10384 \cdot \frac{16}{16}$	
S5-Format	12mA	8192	2000h		16	
(40h)	4mA	0	0000h		$I = D \cdot \frac{16}{16384} + 4$	
	0,8mA	-3277	F333h	Untersteuerung		

3.14.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung

031-1BF60 - AI 8x12Bit 0(4)...20mA > Diagnosedaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.

- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	08h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR	1	Kanalspezifischer Fehler Kanal 4	00h			0Eh
CH5ERR	1	Kanalspezifischer Fehler Kanal 5	00h			0Fh
CH6ERR	1	Kanalspezifischer Fehler Kanal 6	00h			10h
CH7ERR	1	Kanalspezifischer Fehler Kanal 7	00h			11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse – 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

031-1BF60 - AI 8x12Bit 0(4)...20mA > Diagnosedaten

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 3 0: reserviert Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	■ Bit 6 0: Kanaltyp - 70h: Digitaleingabe - 71h: Analogeingabe - 72h: Digitalausgabe - 73h: Analogausgabe - 74h: Analogeingabe/-ausgabe - 76h: Zähler ■ Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 08h)

CHERR Kanalfehler

Byte
0

CH0ERR ... CH7ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	■ Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler
	■ Bit 5 1: reserviert
	■ Bit 6: gesetzt bei Messbereichsunterschreitung
	■ Bit 7: gesetzt bei Messbereichsüberschreitung

031-1BF60 - AI 8x12Bit 0(4)...20mA > Diagnosedaten

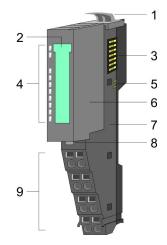
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

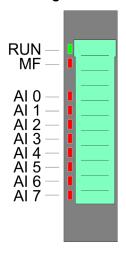
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1 μ s wieder bei 0 beginnt.

031-1BF74 - AI 8x12Bit ±10V


3.15 031-1BF74 - AI 8x12Bit ±10V

Eigenschaften

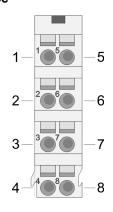
Das Elektronikmodul besitzt 8 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt.

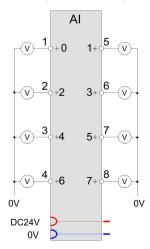

- 8 analoge Single-Ended Eingänge (Bezugspotential 0V)
- Geeignet für Geber ±10V, 0 ... 10V mit externer Versorgung
- Parametrierbare Störfrequenzunterdrückung (50/60Hz)
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x ■ rot	Beschreibung
•		x	Bus-Kommunikation ist OK Modul-Status ist OK
	•	X	Bus-Kommunikation ist OK Modul-Status meldet Fehler
		X	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler <i>∜</i> Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
		•	Fehler Kanal x ■ Signal liegt außerhalb des Messbereichs ■ Fehler in der Parametrierung
nicht relevant: X			

031-1BF74 - AI 8x12Bit ±10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	+AI 2	E	+ Kanal 2
3	+AI 4	E	+ Kanal 4
4	+AI 6	E	+ Kanal 6
5	+AI 1	E	+ Kanal 1
6	+AI 3	E	+ Kanal 3
7	+AI 5	E	+ Kanal 5
8	+AI 7	E	+ Kanal 7

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	Al 3	2	Analogwert Kanal 3	6401h/s+3	04h
+8	Al 4	2	Analogwert Kanal 4	6401h/s+4	05h
+10	Al 5	2	Analogwert Kanal 5	6401h/s+5	06h

031-1BF74 - AI 8x12Bit ±10V > Technische Daten

Adr.	Name	Bytes	Funktion	IX	SX
+12	Al 6	2	Analogwert Kanal 6	6401h/s+6	07h
+14	Al 7	2	Analogwert Kanal 7	6401h/s+7	08h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.15.1 Technische Daten

Bezeichnung SM 031 - Analoge Eingabe Modulkennung 0415 15C5 Stromaufnahme verlustleistung 70 mA Verlustleistung 0,8 W Technische Daten Analoge Eingänge 8 Anzahl Eingänge 8 Leitungslange geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge √ min. Eingangswiderstand im Spannungsbereich 100 kΩ Eingangsspannungsbereiche 0 V +10 V Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Gerundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Gebrauchsfehlergrenze Strombereiche mit SFU - Gebrauchsfehlergrenze Strombereiche mit SFU -	Artikelnr.	031-1BF74
Stromaufnahmer/Verlustleistung 70 mA Stromaufnahme aus Rückwandbus 70 mA Verlustleistung 0,8 W Technische Daten Analoge Eingänge 8 Anzahl Eingänge 8 Leitungslänge geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge ✓ min. Eingangswiderstand im Spannungsbereich 100 kΩ Eingangsspannungsbereiche 0 V +10 V -10 V +10 V - Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU -	Bezeichnung	SM 031 - Analoge Eingabe
Stromaufnahme aus Rückwandbus 70 mA Verlustleistung 0,8 W Technische Daten Analoge Eingänge 8 Anzahl Eingange 8 Leitungslänge geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge ✓ min. Eingangswiderstand im Spannungsbereich 100 kΩ Eingangsspannungsbereiche 0 V +10 V -10 V +10 V - Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Stro	Modulkennung	0415 15C5
Verlustleistung 0,8 W Technische Daten Analoge Eingänge 8 Anzahl Eingänge geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge ✓ min. Eingangswiderstand im Spannungsbereich 100 kΩ Eingangsspannungsbereiche 0 V +10 V Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehl	Stromaufnahme/Verlustleistung	
Technische Daten Analoge Eingänge Anzahl Eingänge Leitungslänge geschirmt Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) Spannungseingänge win. Eingangswiderstand im Spannungsbereich Eingangsspannungsbereiche 0 V +10 V -10 V +10 V -10 V +10 V Gebrauchsfehlergrenze Spannungsbereiche wit SFU Grundfehlergrenze Spannungsbereiche wit SFU Grundfehlergrenze Spannungsbereiche mit SFU Zerstörgrenze Spannung max. 30V Stromeingänge max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche wit SFU Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche wit SFU Grundfehlergrenze Strombereiche wit SFU Grundfehlergrenze Strombereiche wit SFU Grundfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche wit SFU Zerstörgrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung)	Stromaufnahme aus Rückwandbus	70 mA
Anzahl Eingänge 8 Leitungslänge geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge ✓ min. Eingangswiderstand im Spannungsbereich 100 kΩ Eingangsspannungsbereiche 0 V +10 V Eingangsspannungsbereiche +/-1,1% Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze	Verlustleistung	0,8 W
Leitungslänge geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge ✓ min. Eingangswiderstand im Spannungsbereich 100 kΩ Eingangsspannungsbereiche 0 V +10 V -10 V +10 V - Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	Technische Daten Analoge Eingänge	
Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge ν min. Eingangswiderstand im Spannungsbereich 100 kΩ Eingangsspannungsbereiche 0 V +10 V -10 V +10 V - Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	Anzahl Eingänge	8
Stromaufnahme aus Lastspannung L+ (ohne Last) Spannungseingänge min. Eingangswiderstand im Spannungsbereich Eingangsspannungsbereiche 0 V +10 V -10 V +10 V Gebrauchsfehlergrenze Spannungsbereiche +/-1,1% Gebrauchsfehlergrenze Spannungsbereiche mit SFU Grundfehlergrenze Spannungsbereiche +/-1,0% Grundfehlergrenze Spannungsbereiche mit SFU Zerstörgrenze Spannungsbereiche mit SFU Stromeingänge max. 20V Stromeingänge	Leitungslänge geschirmt	200 m
Spannungseingänge ✓ min. Eingangswiderstand im Spannungsbereich 100 kΩ Eingangsspannungsbereiche 0 V +10 V -10 V +10 V - Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	Lastnennspannung	DC 24 V
min. Eingangswiderstand im Spannungsbereich Eingangsspannungsbereiche 0 V +10 V -10 V +10 V Gebrauchsfehlergrenze Spannungsbereiche 4/-1,1% Gebrauchsfehlergrenze Spannungsbereiche mit SFU Grundfehlergrenze Spannungsbereiche mit SFU Grundfehlergrenze Spannungsbereiche mit SFU Zerstörgrenze Spannung max. 30V Stromeingänge max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung)	Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Eingangsspannungsbereiche 0 V +10 V -10 V +10 V Gebrauchsfehlergrenze Spannungsbereiche +/-1,1% Gebrauchsfehlergrenze Spannungsbereiche mit SFU Grundfehlergrenze Spannungsbereiche +/-1,0% Grundfehlergrenze Spannungsbereiche mit SFU Zerstörgrenze Spannung max. 30V Stromeingänge max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung)	Spannungseingänge	✓
-10 V +10 V Gebrauchsfehlergrenze Spannungsbereiche +/-1,1% Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge max. Eingangswiderstand im Strombereich - Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	min. Eingangswiderstand im Spannungsbereich	100 kΩ
Gebrauchsfehlergrenze Spannungsbereiche +/-1,1% Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche +/-1,0% Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU -	Eingangsspannungsbereiche	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche mit SFU Grundfehlergrenze Spannungsbereiche +/-1,0% Grundfehlergrenze Spannungsbereiche mit SFU Zerstörgrenze Spannung max. 30V Stromeingänge max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche int SFU Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung)		-10 V +10 V
Grundfehlergrenze Spannungsbereiche +/-1,0% Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	Gebrauchsfehlergrenze Spannungsbereiche	+/-1,1%
Grundfehlergrenze Spannung Zerstörgrenze Spannung max. 30V Stromeingänge max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung)	Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	Grundfehlergrenze Spannungsbereiche	+/-1,0%
Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	Grundfehlergrenze Spannungsbereiche mit SFU	-
max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung)	Zerstörgrenze Spannung	max. 30V
Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	Stromeingänge	-
Gebrauchsfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	max. Eingangswiderstand im Strombereich	-
Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	Eingangsstrombereiche	-
Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	Gebrauchsfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) -	Gebrauchsfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung) -	Grundfehlergrenze Strombereiche	-
	Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Strom) -	Zerstörgrenze Stromeingänge (Spannung)	-
	Zerstörgrenze Stromeingänge (Strom)	-

031-1BF74 - AI 8x12Bit ±10V > Technische Daten

Artikelnr.	031-1BF74
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	12
Messprinzip	sukzessive Approximation
Grundwandlungszeit	1,1ms alle Kanäle
Störspannungsunterdrückung für Frequenz	>50dB bei 50Hz (UCM<2V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein

031-1BF74 - Al 8x12Bit ±10V > Technische Daten

Diagnoseifunktion ja Diagnoseinformation auslesbar moglich Modulstatus grüne LED Modulfehreranzeige rote LED Kanalfehleranzeige rote LED pro Kanal Potenzialtrennung zwischen den Kanälen - zwischen den Kanälen in Gruppen zu - zwischen Kanälen und Rückwandbus - zwischen Kanälen und Spannungsversorgung - max. Potenzialdifferenz zwischen Stromkreisen - max. Potenzialdifferenz zwischen Eingängen (Ucm) - max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) - max. Potenzialdifferenz zwischen Eingängen und Mintern - (Uiso) - max. Potenzialdifferenz zwischen Eingängen und Mintern DC 75 V/ AC 50 V (Uiso) - max. Potenzialdifferenz zwischen Mintern und Ausgängen - Solierung geprüft mit DC 500 V Technische Daten Geberversorgung - Ausgangsspannung (Nennwert) - Kurzschlussschutz - Potenzialbindung - Datengröß	Artikelnr.	031-1BF74
Modulstatus grüne LED Modulfehleranzeige rote LED rote Ranal Potenzialtrennung rote LED pro Kanal wischen den Kanälen - zwischen den Kanälen in Gruppen zu - zwischen Kanälen und Rückwandbus - zwischen Kanälen und Spannungsversorgung - max. Potenzialdifferenz zwischen Strömkreisen - max. Potenzialdifferenz zwischen Eingängen (Ucm) - max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) - max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) DC 75 V/ AC 50 V max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) DC 500 V Technische Daten Geberversorgung - Ausgangsannung (typ) - Ausgangsspannung (Nennwert) - Kurzschlussschutz - Potenzialbindung - Datengrößen - Eingangsbytes 16 Ausgangsspytes 16 Ausgangsbytes 16 Ausgangsbytes 10 Parameterbytes 14 Diagnosebytes 2	Diagnosefunktion	ja
Modulfehleranzeige rote LED Kanalfehleranzeige rote LED pro Kanal Potenzialtrennung rote LED pro Kanal zwischen den Kanälen - zwischen den Kanälen in Gruppen zu - zwischen Kanälen und Rückwandbus -/ zwischen Kanälen und Spannungsversorgung - max. Potenzialdifferenz zwischen Stromkreisen - max. Potenzialdifferenz zwischen Eingängen (Ucm) - max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) - max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) - max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) - max. Potenzialdifferenz zwischen Mintern und Ausgängen - lsollerung geprüft mit DC 500 V Technische Daten Geberversorgung Anzahl Ausgänge - Ausgangsspannung (typ) - Ausgangsspannung (Nennwert) - Kurzschlussschutz - Potenzialbindung - Datengrößen - Eingangsbytes 16 Ausgangsbytes 0 <td< td=""><td>Diagnoseinformation auslesbar</td><td>möglich</td></td<>	Diagnoseinformation auslesbar	möglich
Kanalfehleranzeige rote LED pro Kanal Potenzialtrennung visischen den Kanälen zwischen den Kanälen in Gruppen zu - zwischen Kanälen und Rückwandbus - zwischen Kanälen und Spannungsversorgung - max. Potenzialdifferenz zwischen Stromkreisen - max. Potenzialdifferenz zwischen Eingängen (Ucm) - max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) - max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) DC 75 V/ AC 50 V max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) - kollerung geprüft mit - technische Daten Geberversorgung - kuzsgangsspannung (Modulstatus	grüne LED
Potenzialtrennungzwischen den Kanälen-zwischen den Kanälen in Gruppen zu-zwischen Kanälen und Rückwandbus✓zwischen Kanälen und Spannungsversorgung-max. Potenzialdifferenz zwischen Stromkreisen-max. Potenzialdifferenz zwischen Eingängen (Ucm)-max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)-max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)-(Uiso)DC 75 V/ AC 50 Vmax. Potenzialdifferenz zwischen Eingängen und MinternDC 500 VTechnische Daten Geberversorgung-Anzahl Ausgänge-Ausgangsspannung (Iyp)-Ausgangsspannung (Nennwert)-Kurzschlussschutz-Potenzialbindung-Datengrößen-Eingangsbytes16Ausgangsbytes0Parameterbytes14Diagnosebytes0Gehäuse-MaterialPPE / PPE GF10BefestigungProfilschlene 35mmMechanische Daten12,9 mm x 109 mm x 76,5 mmGewicht Netto57 g	Modulfehleranzeige	rote LED
zwischen den Kanälen - zwischen den Kanälen in Gruppen zu - zwischen Kanälen und Rückwandbus - zwischen Kanälen und Spannungsversorgung - max. Potenzialdifferenz zwischen Stromkreisen - max. Potenzialdifferenz zwischen Eingängen (Ucm) - max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) - max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) DC 75 V/ AC 50 V max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) - Solierung geprüft mit DC 500 V Technische Daten Geberversorgung - Ausgangsspannung ((vp) - Ausgangsspannung (Nennwert) - Kurzschlussschutz - Potenzialbindung - Datenzialbindung -<	Kanalfehleranzeige	rote LED pro Kanal
zwischen den Kanälen in Gruppen zu - zwischen Kanälen und Rückwandbus - zwischen Kanälen und Spannungsversorgung - max. Potenzialdifferenz zwischen Stromkreisen - max. Potenzialdifferenz zwischen Eingängen (Ucm) - max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) - max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) - max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) - Technische Daten Geberversorgung - Ausgangspartung (Ivp) - Ausgangsspannung (Ivp) - Auurgangspartung (Ivp) - Auurgangsbytes 16	Potenzialtrennung	
zwischen Kanälen und Rückwandbus	zwischen den Kanälen	-
zwischen Kanälen und Spannungsversorgung - max. Potenzialdifferenz zwischen Stromkreisen - max. Potenzialdifferenz zwischen Eingängen (Ucm) - max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) - max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) DC 75 V/ AC 50 V max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) DC 75 V/ AC 50 V max. Potenzialdifferenz zwischen Mintern und Ausgängen - Isolierung geprüft mit DC 500 V Technische Daten Geberversorgung - Ausgangsspannung (typ) - Ausgangsspannung (Nennwert) - Kurzschlussschutz - Potenzialbindung - Datengrößen - Eingangsbytes 16 Ausgangsbytes 0 Parameterbytes 14 Diagnosebytes 20 Gehäuse - Material PPE / PPE GF10 Befestigung Proflischiene 35mm Mechanische Daten - Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm	zwischen den Kanälen in Gruppen zu	-
max. Potenzialdifferenz zwischen Stromkreisen max. Potenzialdifferenz zwischen Eingängen (Ucm) max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen lsolierung geprüft mit DC 500 V Technische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung (typ) Ausgangsspannung (Nennwert) Kurzschlussschutz Potenzialbindung Datengrößen Eingangsbytes 16 Ausgangsbytes 16 Ausgangsbytes 16 Ausgangsbytes 10 Parameterbytes 14 Diagnosebytes 20 Gehäuse Material Befestigung Mechanische Daten Mechanische Daten Junn x 109 mm x 76,5 mm Sowicht Netto 57 g	zwischen Kanälen und Rückwandbus	✓
max. Potenzialdifferenz zwischen Eingängen (Ucm) - max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) - max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) DC 75 V/ AC 50 V max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) DC 75 V/ AC 50 V max. Potenzialdifferenz zwischen Mintern und Ausgängen - Isolierung geprüft mit DC 500 V Technische Daten Geberversorgung Anzahl Ausgänge - Ausgangsspannung (typ) - Ausgangsspannung (Nennwert) - Kurzschlussschutz - Potenzialbindung - Datengrößen - Eingangsbytes 16 Ausgangsbytes 0 Parameterbytes 14 Diagnosebytes 20 Gehäuse - Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten - Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 57 g	zwischen Kanälen und Spannungsversorgung	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen lsolierung geprüft mit Technische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung (typ) Ausgangsspannung (Nennwert) Kurzschlussschutz Potenzialbindung Datengrößen Eingangsbytes 16 Ausgangsbytes 16 Ausgangsbytes 10 Parameterbytes 14 Diagnosebytes 20 Gehäuse Material Befestigung Mechanische Daten Mechanische Daten Mechanische Daten Bewicht Netto 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 57 g	max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen rechnische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung (typ) Ausgangsspannung (Nennwert) Kurzschlussschutz Potenzialbindung Datengrößen Eingangsbytes Ausgangsbytes 16 Ausgangsbytes 16 Ausgangsbytes 10 Diagnosebytes 10 Diagnos	max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
(Ucm)DC 75 V/ AC 50 Vmax. Potenzialdifferenz zwischen Mintern und Ausgängen-Isolierung geprüft mitDC 500 VTechnische Daten Geberversorgung-Anzahl Ausgänge-Ausgangsspannung (typ)-Ausgangsspannung (Nennwert)-Kurzschlussschutz-Potenzialbindung-Datengrößen-Eingangsbytes16Ausgangsbytes0Parameterbytes14Diagnosebytes20Gehäuse-MaterialPPE / PPE GF10BefestigungProfilschiene 35mmMechanische Daten12,9 mm x 109 mm x 76,5 mmGewicht Netto57 g	max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
(Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen Isolierung geprüft mit DC 500 V Technische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung (typ) -Ausgangsspannung (Nennwert) Kurzschlussschutz -Chenzialbindung -Chenzialbindung Datengrößen Eingangsbytes 16 Ausgangssplates 10 Parameterbytes 14 Diagnosebytes 20 Gehäuse Material Befestigung Mechanische Daten Mechanische Daten Gewicht Netto DI 500 V D 50		-
Isolierung geprüft mit Technische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung (typ) Ausgangsspannung (Nennwert) Kurzschlussschutz Potenzialbindung Datengrößen Eingangsbytes Ausgangsbytes Ausgangsbytes Ausgangsbytes Parameterbytes 14 Diagnosebytes 20 Gehäuse Material Befestigung Mechanische Daten Mechanische Daten Abmessungen (BxHxT) Gewicht Netto D. C.		DC 75 V/ AC 50 V
Technische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung (typ)	max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Anzahl Ausgänge Ausgangsspannung (typ)	Isolierung geprüft mit	DC 500 V
Ausgangsspannung (typ) Ausgangsspannung (Nennwert) Kurzschlussschutz Potenzialbindung Datengrößen Eingangsbytes Ausgangsbytes 0 Parameterbytes 14 Diagnosebytes 20 Gehäuse Material Befestigung Mechanische Daten Abmessungen (BxHxT) Gewicht Netto	Technische Daten Geberversorgung	
Ausgangsspannung (Nennwert) Kurzschlussschutz Potenzialbindung - Datengrößen Eingangsbytes 16 Ausgangsbytes 0 Parameterbytes 14 Diagnosebytes 20 Gehäuse Material Befestigung Mechanische Daten Abmessungen (BxHxT) Gewicht Netto - Centanter (Nennwert) - - - - - - - - - - - - -	Anzahl Ausgänge	-
Kurzschlussschutz Potenzialbindung - Datengrößen Eingangsbytes 16 Ausgangsbytes 0 Parameterbytes 14 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) Gewicht Netto - -	Ausgangsspannung (typ)	-
Potenzialbindung - Datengrößen	Ausgangsspannung (Nennwert)	-
DatengrößenEingangsbytes16Ausgangsbytes0Parameterbytes14Diagnosebytes20GehäuseVERFORTMaterialPPE / PPE GF10BefestigungProfilschiene 35mmMechanische Daten12,9 mm x 109 mm x 76,5 mmGewicht Netto57 g	Kurzschlussschutz	-
Eingangsbytes 16 Ausgangsbytes 0 Parameterbytes 14 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 57 g	Potenzialbindung	-
Ausgangsbytes Parameterbytes 14 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 57 g	Datengrößen	
Parameterbytes 14 Diagnosebytes 20 Gehäuse	Eingangsbytes	16
Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 57 g	Ausgangsbytes	0
GehäuseMaterialPPE / PPE GF10BefestigungProfilschiene 35mmMechanische Daten12,9 mm x 109 mm x 76,5 mmGewicht Netto57 g	Parameterbytes	14
Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 57 g	Diagnosebytes	20
Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 57 g	Gehäuse	
Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 57 g	Material	PPE / PPE GF10
Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 57 g	Befestigung	Profilschiene 35mm
Gewicht Netto 57 g	Mechanische Daten	
ē.	Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht inklusive Zubehör 57 g	Gewicht Netto	57 g
	Gewicht inklusive Zubehör	57 g

031-1BF74 - AI 8x12Bit ±10V > Parametrierdaten

Artikelnr.	031-1BF74
Gewicht Brutto	72 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

3.15.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
SUPR	2	Störfrequenzunterdrückung (SFU)	0000h	01h	3100h, 3101h	01h
CH0FN	1	Funktionsnummer Kanal 0	12h	80h	3102h	02h
CH1FN	1	Funktionsnummer Kanal 1	12h	81h	3103h	03h
CH2FN	1	Funktionsnummer Kanal 2	12h	82h	3104h	04h
CH3FN	1	Funktionsnummer Kanal 3	12h	83h	3105h	05h
CH4FN	1	Funktionsnummer Kanal 4	12h	84h	3106h	06h
CH5FN	1	Funktionsnummer Kanal 5	12h	85h	3107h	07h
CH6FN	1	Funktionsnummer Kanal 6	12h	86h	3108h	08h
CH7FN	1	Funktionsnummer Kanal 7	12h	87h	3109h	09h

SUPR Störfrequenzunterdrückung (SFU)

Byte B	3it 15 0
0	Bit 0, 1: Störfrequenzunterdrückung Kanal 0 Bit 2, 3: Störfrequenzunterdrückung Kanal 1 Bit 4, 5: Störfrequenzunterdrückung Kanal 2 Bit 6, 7: Störfrequenzunterdrückung Kanal 3 Bit 8, 9: Störfrequenzunterdrückung Kanal 4 Bit 10, 11: Störfrequenzunterdrückung Kanal 5 Bit 12, 13: Störfrequenzunterdrückung Kanal 6 Bit 14, 15: Störfrequenzunterdrückung Kanal 7 — 00: deaktiviert — 01: 60Hz — 10: 50Hz

031-1BF74 - AI 8x12Bit ±10V > Parametrierdaten

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

±10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
±10V	11,76V	32511	7EFFh	Übersteuerung	D = 27649
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(12h)	5V	13824	3600h		10
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-5V	-13824	CA00h		2/040
	-10V	-27648	9400h		
	-11,76V	-32512	8100h	Untersteuerung	
±10V	12,5V	20480	5000h	Übersteuerung	D 16204 U
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$
(22h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$
	-5V	-8192	E000h		16384
	-10V	-16384	C000h		
	-12,5V	-20480	B000h	Untersteuerung	

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(10h)	5V	13824	3600h		10
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-1,76V	-4864	ED00h	Untersteuerung	2/048
0 10V	12,5V	20480	5000h	Übersteuerung	D 16294 U
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$
(20h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16224}$
	-2V	-3277	F333h	Untersteuerung	16384

031-1BF74 - AI 8x12Bit ±10V > Diagnosedaten

3.15.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	08h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR	1	Kanalspezifischer Fehler Kanal 4	00h			0Eh
CH5ERR	1	Kanalspezifischer Fehler Kanal 5	00h			0Fh
CH6ERR	1	Kanalspezifischer Fehler Kanal 6	00h			10h
CH7ERR	1	Kanalspezifischer Fehler Kanal 7	00h			11h
DIAG_US	4	µs-Ticker	00h			13h

031-1BF74 - AI 8x12Bit ±10V > Diagnosedaten

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden
	 Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 3 0: reserviert Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 08h)

031-1BF74 - AI 8x12Bit ±10V > Diagnosedaten

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanal 0 Bit 1: gesetzt bei Fehler Kanal 1 Bit 2: gesetzt bei Fehler Kanal 2 Bit 3: gesetzt bei Fehler Kanal 3 Bit 4: gesetzt bei Fehler Kanal 4 Bit 5: gesetzt bei Fehler Kanal 5 Bit 6: gesetzt bei Fehler Kanal 6 Bit 7: gesetzt bei Fehler Kanal 7

CH0ERR ... CH7ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	Bit 0: gesetzt bei Projektierungs-/ParametrierungsfehlerBit 5 1: reserviert
	Bit 6: gesetzt bei MessbereichsunterschreitungBit 7: gesetzt bei Messbereichsüberschreitung

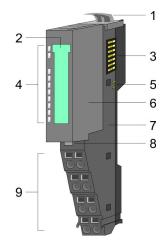
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

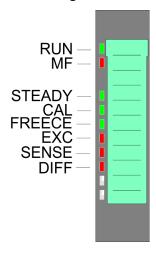
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} -1 μ s wieder bei 0 beginnt.

031-1CA20 - AI 1x16(24)Bit DMS


3.16 031-1CA20 - AI 1x16(24)Bit DMS

Eigenschaften

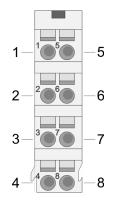
Das Elektronikmodul besitzt einen Kanal und eignet sich zum Anschluss an DMS-Sensoren (**D**ehnungs**m**ess**s**treifen) in Wägezellen, Kraftaufnehmern und Drehmoment-Messwellen. Das Modul besitzt ein parametrierbares Eingangsfilter und unterstützt Diagnosealarm.

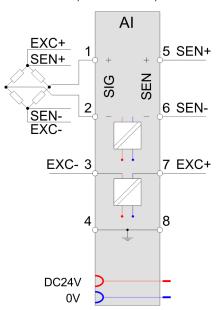

- 1-kanalig zum Anschluss einer Vollbrücke
- Absolute Genauigkeit (Grundfehler ±0,1%)
- Manuelle Kalibrierung (Nullpunkt- und Belastungsabgleich)
- Parametrierbare Selbstkalibrierung (Offset und Verstärkungsfehler)
- Schnelle Messwerterfassung durch hohe Signalbandbreite (ADC mit 4kHz Grenzfrequenz)
- Parametrierbare IIR-Filter (300µs 3,6s oder dynamisch)
- Parametrierbare 50/60Hz Unterdrückung
- Parametrierbare Spannungsversorgung für die Wägezelle(n) / Vollbrücke(n)
- Parallelbetrieb von Wägezellen möglich
- Diagnosefunktion
- 16Bit Auflösung (24Bit intern)

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 3 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige


RUN grün	MF rot	Beschreibung
_		Bus-Kommunikation ist OK
		Modul-Status ist OK
	_	Bus-Kommunikation ist OK
	_	Modul-Status meldet Fehler
		Bus-Kommunikation nicht möglich
	_	Modul-Status meldet Fehler
		Fehler Busversorgungsspannung
X		Konfigurationsfehler
X	2Hz	∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
nicht releva	ınt: X	

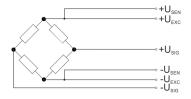

031-1CA20 - AI 1x16(24)Bit DMS

STEADY	CAL	FREECE	EXC	SENSE	DIFF	Pacabraibung		
grün	grün	grün	rot	rot	rot	Beschreibung		
	Χ	Χ	Χ	Χ	Χ	Leuchtet im Zustand Steady State		
Χ		Χ	Χ	Χ	Χ	Leuchtet bei aktiver Selbstkalibrierung		
Χ	Χ		Χ	Χ	Χ	Leuchtet bei aktiviertem Input-Freeze		
X	X	X		X	X	Leuchtet bei Kurzschluss bzw. Überlast der Brückenspeisespannung		
Χ	X	X	X		X	Leuchtet bei Bereichsüberschreitung der Brückenspeisespannung		
X	X	X	X	X		Leuchtet bei Bereichsüberschreitung der Differenzspannung		
nicht relevant: X								

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

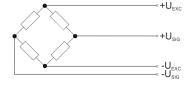
Pos.	Funktion	Тур	Beschreibung			
1	SIG+	E	+ Signal der Differenzspannung $\mathbf{U}_{\mathrm{SIG}}$ der Messbrücke			
2	SIG-	E	- Signal der Differenzspannung \mathbf{U}_{SIG} der Messbrücke			
3	EXC-	Α	- Signal der Brückenspeisespannung \mathbf{U}_{EXC}			
4	Shield		Anschluss für Kabelschirm			
5	SEN+	E	+ Sensor der Brückenspeisespannung U _{SEN}			
6	SEN-	E	- Sensor der Brückenspeisespannung U _{SEN}			
7	EXC+	Α	+ Signal der Brückenspeisespannung U _{EXC}			
8	Shield		Anschluss für Kabelschirm			
A: Ausgang, E: Eingang						


031-1CA20 - AI 1x16(24)Bit DMS > Anschlussvarianten

Bitte verwenden Sie immer die vom Modul zur Verfügung gestellte Brückenspeisespannung $U_{\rm EXC}!$ Der Anschluss von fremd-versorgten Sensoren ist nicht möglich.

3.16.1 Anschlussvarianten

6-Leiter-Messung



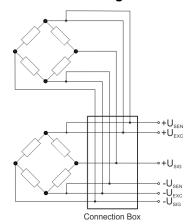
Der nachfolgenden Tabelle können Sie die Eigenschaften der Sensoren entnehmen, welche bei der 6-Leiter-Messung eingesetzt werden können.

Sensor-Eigenschaften

Brückenspei-	Brückenwiderstand R _B									
sespannung U _{EXC}	120Ω	350Ω	700Ω	1000Ω						
2,5V	X	X	X	X						
5V	X	X	X	X						
7,5V	X	X	X	X						
10V	X	X	X	X						
12V	X	X	X	X						

4-Leiter-Messung

Bei der 4-Leiter-Messung bleiben die U_{SEN} -Anschlüsse frei. In dieser Betriebsart wird innerhalb des Moduls eine Verbindung zwischen U_{EXC} und U_{SEN} hergestellt.


Der nachfolgenden Tabelle können Sie die Eigenschaften der Sensoren entnehmen, welche bei der 4-Leiter-Messung eingesetzt werden können.

Sensor-Eigenschaften

Brückenspei-	Brückenwiderstand R _B									
sespannung U _{EXC}	120Ω	350Ω	700Ω	1000Ω						
2,5V	X	X	X	X						
5V	X	X	X	X						
7,5V	X	X	X	X						
10V	X	X	X	X						
12V	X	X	X	X						

031-1CA20 - AI 1x16(24)Bit DMS > Anschlussvarianten

Parallelschaltung

In der Regel werden große mechanische Lasten auf mehrere DMS-Wägezellen verteilt, diese über eine Anschlussbox parallel geschaltet und an das DMS-Modul angebunden. Bitte beachten Sie hierbei, dass die Wägezellen für diesen Betrieb aufeinander abgestimmt und vom Hersteller freigegeben sind. Auch darf die Stromspeisefähigkeit der Aufnehmerelektronik nicht überlastet werden. Die Stromspeisefähigkeit ergibt sich aus der Anzahl parallel geschalteter Wägezellen, der Brückenspeisespannung U_{EXC} und dem Brückenwiderstand.

 I_{EXC} darf abhängig von der Brückenspeisespannung U_{EXC} einen maximalen Strom nicht überschreiten:

- 2,5V: maximaler Strom 120mA
- 5V: maximaler Strom 120mA
- 7,5V: maximaler Strom 100mA
- 10V: maximaler Strom 90mA
- 12V: maximaler Strom 80mA

Für die Berechnung von I_{EXC} gilt folgende Formel:

I_{EXC} Speisestrom

 U_{EXC} Brückenspeisespannung

R_B Brückenwiderstand

n Anzahl der Parallelschaltungen

Die Eigenschaften der Sensoren für z.B. 2 bzw. 3 parallel geschaltete Wägezellen können Sie den nachfolgenden Tabellen entnehmen.

$I_{EXC} = \frac{U_{EXC}}{\frac{R_B}{n}}$

Beispiel

2 parallel	Brückenwiderstand R _B										
Brückenspei- sespannung	60Ω	175Ω	350Ω	500Ω							
U _{EXC}											
2,5V	X	X	X	X							
5V	X	X	X	X							
7,5V	nicht möglich	X	X	X							
10V	nicht möglich	X	X	X							
12V	nicht möglich	X	X	X							

3 parallel		Brückenwiderstand R _B									
Brückenspei- sespannung	40Ω	116,7Ω	233,3Ω	333,3Ω							
U _{EXC}											
2,5V	X	X	X	X							
5V	nicht möglich	X	X	X							
7,5V	nicht möglich	X	X	X							
10V	nicht möglich	X	X	X							
12V	nicht möglich	nicht möglich	X	X							

031-1CA20 - AI 1x16(24)Bit DMS > Ein-/Ausgabebereich

Bitte verwenden Sie für die Verdrahtung Ihrer Sensoren immer geschirmte Leitungen!

Bitte verwenden Sie immer die vom Modul zur Verfügung gestellte Brückenspeisespannung $U_{\rm EXC}!$ Der Anschluss von fremd-versorgten Sensoren ist nicht möglich.

3.16.2 Ein-/Ausgabebereich

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h/7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	DMS_VAL	4	Messwert	5470h/s	01h
+3	DMS_STAT	1	Status	5471h/s	02h

DMS_VAL Messwert (Gewichtswert)

	Byte 0						Byte 1									
Bitnummer	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Wertigkeit	VZ	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
31Bit+VZ	VZ		Messwert													

	Byte 2							Byte 3								
Bitnummer	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wertigkeit	2 ¹⁵	214	2 ¹³	2 ¹²	211	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
31Bit+VZ								Mes	sswert							

031-1CA20 - AI 1x16(24)Bit DMS > Ein-/Ausgabebereich

DMS_STAT Status

Adr.	Name	Bytes	Funktion		
+3	DMS_STAT	1	■ Status-Byte - Bit 0: 1 = Input Freeze aktiv - Bit 1: 1 = Steady State aktiv * - Bit 2: 1 = Selbstkalibrierung läuft * - Bit 3: 1 = Tara wurde geändert - Bit 4: 1 = Justage-Fehler - Bit 5: 1 = Justage wurde geändert - Bit 6: reserviert - Bit 7: 1 = Null- bzw. Referenzpunkt gesetzt		
*) Diese Status-	*) Diese Status-Bits werden durch interne Ereignisse im Modul gesetzt.				

Input Freeze

- Im aktivierten Zustand werden keine Messwerte an das Digitalfilter weitergereicht.
- Solange das Kommando-Bit gesetzt ist, bleibt dieses Bit gesetzt.

Steady State

- Sobald sich ein Messwert länger als die Zeit SSW innerhalb des Toleranzfensters SST befindet, wird im Statuswort das Steady State Bit gesetzt.
- Sobald diese Bedingung nicht mehr zutrifft, wird zunächst der letzte Messwert verwendet, der Vergleichstimer neu gestartet und das Bit wieder zurückgesetzt.
- Die Werte SSW und SST k\u00f6nnen Sie \u00fcber die Parametrierung vorgeben. \u03b8 Kap.
 3.16.5 "Parametrierdaten" Seite 181

Selbstkalibrierung

- Solange die Selbstkalibrierung aktiv ist, ist dieses Bit gesetzt.
- Bei der Selbstkalibrierung werden intern zwei Referenzwerte gemessen und daraus ein interner Offset & Faktor errechnet.
- Mit der Selbstkalibrierung soll der interne Offset- und Verstärkungsfehler korrigiert werden.
- Das Kalibrierintervall CI können Sie über die Parametrierung einstellen.

Tara

- Beim Setzen oder Löschen des Tarawertes wird dieses Bit gesetzt.
- Solange das entsprechende Kommando-Bit gesetzt ist, bleibt dieses Bit gesetzt.

Justage

- Beim Speichern oder Löschen der Justagedaten wird dieses Bit gesetzt.
- Solange das entsprechende Kommando-Bit gesetzt ist, bleibt dieses Bit gesetzt.

■ Null- bzw. Referenzpunkt

- Beim Setzen des Null- bzw. Referenzpunkts wird dieses Bit gesetzt.
- Solange das entsprechende Kommando-Bit gesetzt ist, bleibt dieses Bit gesetzt.

Ausgabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	DMS_CMD	1	Kommando-Byte	5670h/s	01h

031-1CA20 - AI 1x16(24)Bit DMS > Technische Daten

DMS_CMD

Adr.	Name	Bytes	Funktion
+0	DMS_CMD	1	 Kommando-Byte: Jedes gesetzte Bit im DMS_CMD wird mit einem Bit im DMS_STAT quittiert. Bit 0: Aktiviere Input Freeze → DMS_STAT-Bit 0: aktiv Bit 1: Speichere Justage → DMS_STAT-Bit 5: aktiv Bit 2: Lösche Justage → DMS_STAT-Bit 5: aktiv Bit 3: Setze Tara → DMS_STAT-Bit 3: aktiv Bit 4: Lösche Tara → DMS_STAT-Bit 3: aktiv Bit 5: reserviert Bit 6: Setze Nullpunkt → DMS_STAT-Bit 7: aktiv Bit 7: Setze Referenzpunkt → DMS_STAT-Bit 7: aktiv

Input Freeze

- Im aktivierten Zustand werden keine Messwerte an das Digitalfilter weitergereicht.
- Durch kurzzeitige Aktivierung von Input Freeze können Sie Impulse, z.B. verursacht durch einen Befüllvorgang verhindern, welche das Filter unnötig übersteuern würden.
- Den Status von Input Freeze k\u00f6nnen Sie jederzeit \u00fcber Bit 0 von DMS_STAT ermitteln.

Justage

- Speichere Justage: Dient zur Speicherung der Justagedaten bei Belastung mit dem Referenzgewicht.
- Lösche Justage: Dient zum Löschen der Justagedaten.
- Bei beiden Befehlen wird Bit 5 im DMS_STAT gesetzt. Im Fehlerfall wird Bit 4 gesetzt.

■ Tara

- Setze Tara: Der aktuelle Wert wird als Tara übernommen.
- Lösche Tara: Tara wird auf 0 gesetzt.
- Bei beiden Befehlen wird Bit 3 im DMS_STAT gesetzt.

Null- und Referenzpunkt

- Beide Befehle dienen der Anwenderjustage und bei beiden Befehlen wird Bit 7 im DMS_STAT gesetzt.
- Setze Nullpunkt: Dient zum Setzen der Waage auf 0 wenn diese ohne Belastung betrieben wird.
- Setze Referenzpunkt: Dient zur Einstellung der Wage, wenn diese mit einem Referenzgewicht belastet ist.

3.16.3 Technische Daten

Artikelnr.	031-1CA20
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0841 1809
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	55 mA
Verlustleistung	1 W
Technische Daten DMS Eingänge	
Anzahl Eingänge	1
Leitungslänge geschirmt	200 m

031-1CA20 - AI 1x16(24)Bit DMS > Technische Daten

Artikelnr.	031-1CA20
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastspannung L+ (ohne Last)	18 mA
Relative Genauigkeit nach Selbstkalibrierung	+/-0,01%
Gebrauchsfehlergrenze Usense	+/-0,2%
Gebrauchsfehlergrenze Usig	+/-0,2%
Grundfehlergrenze Usense	+/-0,1%
Grundfehlergrenze Usig	+/-0,1%
Zerstörgrenze Spannung	max. 12V
Externe Brückenversorgung möglich	-
Interne Brückenversorgung möglich	✓
Einstellbare Brückenversorgung	2,5V / max. 120mA 5V / max. 120mA 7,5V / max. 100mA 10V / max. 90mA 12V / max. 80mA
Auflösung in Bit	24
Messprinzip	sukzessive Approximation
Grundwandlungszeit	1ms Zyklus, 10ms330ms je nach Filter
Eingangsfilter Hardware	Tiefpass 10kHz 3.Ordnung
Eingangsfilter Software	Dynamisches IIR-Filter einstellbares IIR-Filter 0,1Hz1000Hz einstellbares FIR-Filter 50Hz/60Hz
Eingangsdatengröße	4 Byte
Daten zur Auswahl des DMS Geber	
Brücken-Versorgungsspannung EXC	012V
Brücken-Differenzspannung SIG	+/-29mV
Nennkennwert	0,54mV/V
4-Leiteranschluss möglich	✓
6-Leiteranschluss möglich	✓
Mögliche Brückenkonfiguration	symmetrische Vollbrücke
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja, parametrierbar
Prozessalarm	nein
Diagnosealarm	ja, parametrierbar
Diagnosefunktion	ja

031-1CA20 - Al 1x16(24)Bit DMS > Technische Daten

Artikelnr.	031-1CA20
Diagnoseinformation auslesbar	möglich
Modulstatus	ja
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	-
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	5
Ausgangsbytes	1
Parameterbytes	30
Diagnosebytes	20
Gehäuse	
Material	PC / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	64 g
Gewicht inklusive Zubehör	64 g
Gewicht Brutto	78 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	in Vorbereitung

031-1CA20 - AI 1x16(24)Bit DMS > Funktionsweise

3.16.4 Funktionsweise

3.16.4.1 Grundlagen - DMS

DMS

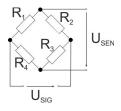
DMS (**D**ehnungs**m**ess**s**treifen) werden direkt auf einem Körper fixiert oder sind Teil eines Sensors und bieten folgende Möglichkeiten:

- Messung von Dehnungen, Stauchungen oder Torsionen
- Messung verschiedener Kräfte und Bewegungen

Es gibt folgende DMS-Typen:

- elektrisches DMS
 - Ein elektrisches DMS besteht aus einem Trägermaterial (z.B. dehnbare Kunststofffolie) mit aufgebrachter Metallfolie. Hieraus wird ein Gitter aus elektrisch leitfähigem Widerstandsmaterial erstellt. Bei der Messung wird das Verhalten ausgenutzt, dass z.B. bei Dehnung eines metallischen Widerstandsleiters seine Länge zu-, und der Durchmesser abnimmt. Hierbei steigt der elektrischer Widerstand proportional.

optisches DMS


 Ein optisches DMS besteht aus einer als Sensor genutzten Faser, mit einem in die Faser eingelaserten Gitter. Bei der Messung wird das Verhalten ausgenutzt, dass bei mechanischer Beanspruchung sich die optischen Eigenschaften des Sensors ändern. Es wird Licht mit einer bestimmten Wellenlänge in den Sensor geleitet. Je nach Verformung des in den Sensor eingelaserten Gitters wird ein Teil des Lichts reflektiert und mit einem geeigneten Messwertaufnehmer (Interrogator) ausgewertet.

Kenndaten eines DMS

- Nennlast
 - Maximal zulässige Belastung für normalen Betrieb.
 - Die Vorgabe der Nennlast erfolgt einheitenfrei.
- Nennkennwert
 - Der Nennkennwert ist ein Maß für die Empfindlichkeit der Widerstandsbrücke in Abhängigkeit von der angelegten Brückenspeisespannung.
 - Typischer Wert für eine Vollbrücke ist 2mV/V, d.h. bei Nennlast mit Brückenspeisespannung 12V beträgt die Brückendifferenzspannung ±24mV.
 - Der gängige Bereich umfasst 0,5...4mV/V, je nach Brücken- und Sensortyp.

3.16.4.2 Funktionsweise

Messung

Zur Erfassung eines Gewichtswerts wird eine Versorgungsspannung an die Brückenschaltung angelegt und eine Differenzspannung (U_{SIG}) und Brückenspeisespannung (U_{SEN}) gemessen. Das Prinzip der Messung beruht darauf, dass sich durch eine Verformung die Differenzspannung U_{SIG} der Brücke ändert. Somit ergibt sich ein relativer Gewichtswert durch die Differenz der Spannungen U_{SIG} und U_{SEN} , welche zeitgleich erfasst werden. Die ermittelte Differenz wird in einen Gewichtswert umgerechnet und als Prozessdatum im Eingabebereich abgelegt.

Gewichtswertbestimmung

Mit Ausnahme der *Differenz-* und *Brückenspeisespannung* sind die restlichen Werte über die Parametrierung vorzugeben. Der resultierende Gewichtswert Y wird innerhalb des Moduls nach folgenden Formeln bestimmt:

031-1CA20 - AI 1x16(24)Bit DMS > Parametrierdaten

 $Y_{R} = \frac{U_{SIG}}{U_{SEN}}$

Relativer Wert

U_{SIG} Gemessene Differenzspannung der Messbrücke

U_{SEN} Gemessene Brückenspeisespannung

RO Nennkennwert

 $Y_A = Y_R \cdot NL \cdot SF$

Y_A Absoluter Wert

Y_R Relativer Wert

NL Nennlast

SF Skalierfaktor Prozessdatum

 $Y=Y_A \cdot GN + TA$

Resultierender Gewichtswert

Y_A Absoluter Wert

GN Anwenderfaktor (Gain) TA Anwenderoffset (Tara)

3.16.5 **Parametrierdaten**

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Parameter

Aufgrund der umfangreichen Parameterdaten können Sie maximal 8 dieser Module an einem PROFIBUS Slave-System betreiben.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnosealarm *	00h	00h	3100h	01h
UEXC	1	Brückenspeisespannung * (Excitation voltage)	00h	01h	3101h	02h
CAL	2	Kalibrierungsintervall *	0000	01h	3102h	03h
MEAS	1	Messmethode	23h	80h	3104h	04h
FILT	1	Filterauswahl	00h	80h	3105h	05h
DFCT	2	Abtastrate Filterumschaltung (Dynamic filter change time)	10h	80h	3106h	06h
DFD	2	Grenzwert Filterumschaltung (Dynamic filter delta)	20h	80h	3108h	07h
RO	2	Nennkennwert (Rated output)	4E20h	80h	310Ah	08h
ZB	2	Nullpunktoffset (Zero balance)	0000h	80h	310Ch	09h
GN	2	Anwenderfaktor (Gain)	1000h	80h	310Eh	0Ah
TA	2	Anwenderoffset (Tara)	0000h	80h	3110h	0Bh
NL	2	Nennlast (Nominal load)	0002h	80h	3112h	0Ch
SF	2	Skalierfaktor Prozessdatum	03E8h	80h	3114h	0Dh

031-1CA20 - AI 1x16(24)Bit DMS > Parametrierdaten

Name	Bytes	Funktion	Default	DS	IX	SX
SST	2	Toleranzfenster Steady State (Steady state tolerance)	0005h	80h	3116h	0Eh
SSW	2	Zeitkonstante Steady State (Steady state window)	03E8h	80h	3118h	0Fh
RL	4	Referenzgewicht (Reference load)	00000100h	80h	311Ah	10h

^{*)} Diesen Datensatz dürfen Sie ausschließlich im STOP-Zustand übertragen.

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm00h: sperren40h: freigeben

Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

UEXC Auswahl Versorgungsspannung

Byte
0

Hier können Sie die Spannungsversorgung für die Brückenspeisespannung U_{EXC} vorgeben, welche das Modul über die Anschlüsse EXC+ und EXC- zur Verfügung stellt.

Bitte verwenden Sie immer die vom Modul zur Verfügung gestellte Brückenspeisespannung $U_{\rm EXC}$! Der Anschluss von fremd-versorgten DMS-Sensoren ist nicht möglich.

CAL Kalibrierintervall

Byte	Bit 7 0
01	 Intervall für die Kalibrierung Kalibrierintervalls als 100ms-Wert 00h: deaktiviert die Kalibrierung

- Durch Vorgabe eines Kalibrierintervalls als 100ms-Wert wird die Selbstkalibrierung immer nach Ablauf dieser Zeit durchgeführt.
- Bei der Selbstkalibrierung werden interne Offset- und Verstärkungsfehler korrigiert.
- Es wird immer der gesamte Signalpfad inklusive aller passiven Bauelemente überprüft.
- Während der Selbstkalibrierung leuchtet die CAL-LED und der Messwert wird eingefroren.
- 00h deaktiviert die Kalibrierung.

031-1CA20 - AI 1x16(24)Bit DMS > Parametrierdaten

MEAS Messmethode

Byte	Bit 7 0
0	 Messmethode 23h: 6-Leiter-Messung 25h: 4-Leiter-Messung FFh: deaktiviert

Hier können Sie zwischen 4- und 6-Leitermessung wählen, bzw. die Messung deaktivieren.

FILT Filterauswahl

Byte	Bit 7 0
0	■ Filterauswahl - 00h: Filter deaktiviert - 01h: Dynamisches IIR-Filter aktivieren - 02h: IIR1 - 03h: IIR2 - 04h: IIR3 - 05h: IIR4 - 06h: IIR5 - 07h: IIR6 - 08h: IIR7 - 09h: IIR8 - 0Ah: FIR 50Hz - 0Bh: FIR 60Hz

Filterfunktionen

- FIR 50/60 Hz
 - Filterung von Netzfrequenz-Störungen
- Dynamisches IIR-Filter
 - automatische Auswahl
 - Filterauswahl abhängig von der aktuellen Gewichtsänderung
- Statisches IIR-Filter
 - Deaktivierung bzw. fixe Vorgabe einer Filterstufe (IIR1...IIR8)

DFCT Abtastrate Filterumschaltung

Byte	Bit 7 0
01	Abtastrate für Filterumschaltung in ms

Hier können Sie die Zeit zur Neubewertung für die Filterumschaltung in ms vorgeben.

DFD Grenzwert Filterumschaltung

Byte	Bit 7 0
01	Grenzwert für Filterumschaltung

Hier können Sie den Grenzwert für die Filterumschaltung vorgeben.

RO Nennkennwert

Byte	Bit 7 0
01	Nennkennwert in 0,0001mv/V

Hier können Sie den Nennkennwert in 0,0001mV/V vorgeben. Informationen zum Nennkennwert finden Sie im Datenblatt zu Ihrem Kraftaufnehmer.

031-1CA20 - AI 1x16(24)Bit DMS > Parametrierdaten

ZB Nullpunktoffset

Byte	Bit 7 0
01	Nullpunktoffset in 0,0001mV/V

Hier können Sie den Nullpunktoffset als 0.0001mV/V-Wert vorgeben. Informationen zum Nullpunktoffset finden Sie im Datenblatt zu Ihrem Kraftaufnehmer.

GN Anwenderfaktor (Gain)

Byte	Bit 7 0
01	Anwenderfaktor zur Anwenderskalierung für den Ausgabewert

■ Hier können Sie einen Faktor als 2⁻¹²-Wert vorgeben. Dieser wird mit dem ermittelten Ausgabewert als Faktor verrechnet.

TA Anwenderoffset (Tara)

Byte	Bit 7 0
01	Tara für den Ausgabewert

Hier können Sie einen Offset als 2⁻¹²-Wert vorgeben. Dieser wird zum ermittelten Ausgabewert hinzuaddiert.

NL Nennlast

Byte	Bit 7 0
01	Nennlast des Kraftaufnehmers

Hier können Sie die Nennlast des Kraftaufnehmers einheitenfrei vorgeben. Informationen zur Nennlast finden Sie im Datenblatt zu Ihrem Kraftaufnehmer.

SF Skalierfaktor Prozessdatum

Byte	Bit 7 0
01	Skalierfaktor für die Nennlast

- Hier können Sie die Skalierung für die Nennlast vorgeben wie z.B. zur Umrechnung von kg in g.
 - Beispiel: Nennlast in kg und Skalierfaktor 1000 (03E8h) ergibt Anzeige in g.

SST Toleranzfenster Steady State

Byte	Bit 7 0
01	Toleranz für Steady State

- Hier können Sie ein Toleranzfenster für den Zustand Steady State vorgeben. Die Angabe erfolgt als Abweichung von der skalierten Nennlast
 - Beispiel: Bei einer Nennlast in kg und Skalierfaktor 1000 (03E8h) müssen Sie zur Einstellung eines Toleranzfensters von 5g den Wert 0005h vorgeben.

SSW Zeitkonstante Steady State

Byte	Bit 7 0
01	Zeitintervall für Steady State in ms

- Hier können Sie ein Zeitintervall für das Setzen des Steady State-Bits (DMS_STAT-Bit 1) vorgeben.
- Befindet sich der Messwert länger als das Zeitintervall SSW innerhalb des Toleranzfensters SST, wird im Statuswort DMS STAT-Bit 1 gesetzt.

031-1CA20 - AI 1x16(24)Bit DMS > Einsatz der Filterfunktion

RL Referenzgewicht

Byte	Bit 7 0
03	Referenzgewicht für Kalibrierung

Hier können Sie das Referenzgewicht einheitenlos für den Kalibriervorgang vorgeben. Das Referenzgewicht muss mindestens 20% der Nennlast NL betragen.

3.16.6 Einsatz der Filterfunktion

Übersicht

Das Modul besitzt folgende Filterfunktionen, welche Sie über die Parametrierung aktivieren können:

- FIR 50/60 Hz
- Dynamisches IIR-Filter
- Statisches IIR-Filter

FIR 50/60 Hz

In der Parametrierung können Sie über FILT die Filter FIR 50 Hz bzw. FIR 60 Hz einstellen. Diese Filter arbeitet als Kerb-Filter. Kerb-Filter erzeugen bei der genannten Frequenz und dem vielfachen davon Nullstellen (Kerben) im Frequenzgang. Sie dämpfen hier diese Frequenzen in der Amplitude. Bei Einsatz dieser Filter bestimmen diese die Wandlungszeit Ihres Moduls. Je höher die Filterfrequenz, desto schneller ist die Wandlungszeit. Hiermit lassen sich Störungen ausfiltern, welche sich aufgrund der Netzspannung ergeben.

Dynamisches IIR-Filter

- Durch Aktivierung des dynamischen IIR-Filter im Parameter FILT wird, abhängig von der aktuellen Gewichtsänderung, automatisch zwischen 8 unterschiedlichen Filtern umgeschaltet. Ziel hierbei ist es, ein Filter mit möglichst großer Dämpfung zu erhalten, welches stabile Messwerte liefern soll. Das Dynamische IIR-Filter ist als Tiefpassfilter 1. Ordnung ausgelegt und besitzt folgende Eigenschaften:
 - Findet eine schnelle Änderung der Eingangsgröße statt, wird zum nächstniedrigeren Filter umgeschaltet (z.B. IIR1→IIR2). Auf diese Weise wird die Laständerung zwar ungenauer, dafür aber umso schneller erkannt.
 - Findet eine geringe Messwertänderung statt wird zum nächsthöheren Filter umgeschaltet (z.B. IIR2-)IIR1), somit erhält man eine höhere Genauigkeit.
 - Mit dem IIR1-Filter erhalten Sie die niedrigste Störunterdrückung und den instabilsten Messwert.
 - Mit dem IIR8-Filter erhalten Sie die h\u00f6chste St\u00f6runterdr\u00fcckung und den stabilsten Messwert.
 - Die Neubewertung, die zur Änderung des Filter-Levels führen kann, erfolgt in einem festen Intervall, welchen Sie über den Parameter *DFCT* in ms vorgeben können.

Filterstufe	Grenzfrequenz	Filterkonstante	Anstiegszeit 10-90% [s] (typ.)
02h: IIR1	1000Hz	$a_0 = 0.5$	0,0003
03h: IIR2	500Hz	$a_0 = 0.25$	0,0008
04h: IIR3	125Hz	$a_0 = 62,5x10^{-3}$	0,0035
05h: IIR4	30Hz	$a_0 = 15,6x10^{-3}$	0,014
06h: IIR5	8Hz	$a_0 = 3,91x10^{-3}$	0,056
07h: IIR6	2Hz	$a_0 = 977x10^{-6}$	0,225

031-1CA20 - AI 1x16(24)Bit DMS > Ruheerkennung

Filterstufe	Grenzfrequenz	Filterkonstante	Anstiegszeit 10-90% [s] (typ.)
08h: IIR7	0,5Hz	$a_0 = 244 \times 10^{-6}$	0,9
09h: IIR8	0,1Hz	$a_0 = 61,0x10^{-6}$	3,6

Übersteuerung des Filters verhindern

Durch kurzfristige Aktivierung von Input Freeze im Kommando-Byte DMS_CMD können Sie Impulse, z.B. verursacht durch einen Befüllvorgang verhindern, welche das Filter unnötig übersteuern würden. Solange Input Freeze aktiv ist, werden keine Messwerte an das Digitalfilter weitergeleitet.

Statisches IIR-Filter

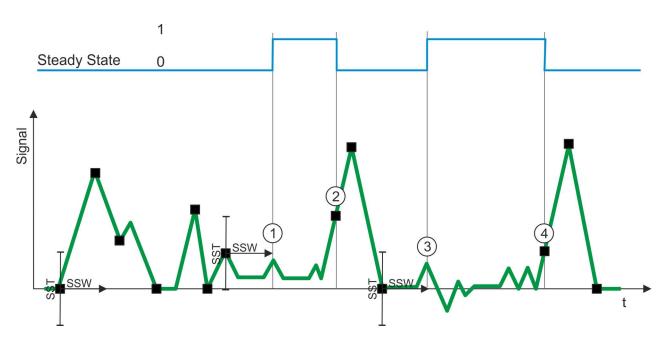
Sie haben die Möglichkeit über den Parameter FILT die Filter-Funktion zu deaktivieren oder eine Filterstufe (IIR1...IIR8) fest vorzugeben.

3.16.7 Kalibrierung

Vorgehensweise

Verwenden Sie für die Kalibrierung das Softwarefilter IIR8 (langsam). Folgende Schritte sind für die Kalibrierung erforderlich:

- **1.** Geben Sie in der Parametrierung das *Referenzgewicht* RL an. Das *Referenzgewicht* muss mindestens 20% der *Nennlast* betragen.
- **2.** Betreiben Sie die Waage ohne Belastung.
- 3. Sobald ein stabiler Wert angezeigt wird, ist das Bit 6 (Setze Nullpunkt) im Kommando-Byte *DMS_CMD* zu setzen.
- **4.** Belasten Sie die Waage mit dem Referenzgewicht. Sobald ein stabiler Wert angezeigt wird, ist das Bit 7 (Setze Referenzpunkt) im Kommando-Byte *DMS_CMD* zu setzen.
- 5. ▶ Setzen Sie das Bit 1 (Speichere Justage) im Kommando-Byte *DMS_CMD*.
 - ⇒ Sobald die Justagedaten erfolgreich gespeichert wurden, misst das Modul mit diesen Werten. Die Justagedaten bleiben auch nach Spannungsverlust erhalten und können über Bit 2 (Justage löschen) gelöscht werden. Die Justagedaten können nur alle 120 Sekunden neu geschrieben werden.


3.16.8 Ruheerkennung

Funktionsweise

- Befindet sich der Messwert länger als die Zeit SSW innerhalb eines Wertebereichs SST, wird im Statuswort DMS_STAT Bit 1 (Steady State aktiv) gesetzt. Der aktuelle Messwert wird als Ausgangspunkt für den Wertebereich verwendet und der Steady-State-Timer gestartet.

 ### "DMS_STAT Status" Seite 176"
- Bleibt der Messwert über den Zeitraum SSW innerhalb von SST, wird das Steady-State-Bit gesetzt.
- Wird der Toleranzbereich *SST* verlassen, wird der letzte Messwert als Ausgangspunkt gesetzt und der Timer neu gestartet.
- Die Werte SSW und SST können Sie über die Parametrierung vorgeben. ∜ Kap. 3.16.5 "Parametrierdaten" Seite 181

031-1CA20 - AI 1x16(24)Bit DMS > Diagnose

- Ausgangspunkt bei dem der SSW-Timer neu gestartet wird. Erst wenn das Messsignal länger als die Zeit SSW innerhalb des Wertebereichs SST sich befindet, wird Stady-State gesetzt.
- [1] SSW-Timer ist abgelaufen und das Messsignal befindet sich noch innerhalb des Wertebereichs → Steady-State-Bit wird gesetzt.
- [2] Messsignal außerhalb des Wertebereichs → Steady-State-Bit wird zurückgesetzt.
- [3] SSW-Timer ist abgelaufen und das Messsignal befindet sich noch innerhalb des Wertebereichs. → Steady-State-Bit wird gesetzt
- [4] Messsignal außerhalb des Wertebereichs → Steady-State-Bit wird zurückgesetzt.

3.16.9 Diagnose

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose kommend bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm gehend. Wurde für einen Kanal ein Diagnosealarm kommend wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm gehend verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm kommend bis letzter Diagnosealarm gehend) leuchtet die MF-LED des Moduls.

Folgende Ereignisse können einen Diagnosealarm auslösen:

- Externe Versorgungsspannung fehlt
- Interner Diagnosepufferüberlauf
- Interner Kommunikationsfehler
- Fehler in Projektierung bzw. Parametrierung
- Messbereichsunterschreitung
- Messbereichsüberschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

031-1CA20 - AI 1x16(24)Bit DMS > Diagnose

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	01h			08h
CHERR	1	Kanalfehler	00h			09h
CHxERR	8	Kanalspezifischer Fehler	00h			0Ah11h
		Kanal x				
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: reserviert Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	■ Bit 3 0: Modulklasse — 0101b Analogbaugruppe
	■ Bit 4: Kanalinformation vorhanden ■ Bit 7 5: reserviert

ERR_C reserviert

Byte	Bit 7 0
0	reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

031-1CA20 - AI 1x16(24)Bit DMS > Diagnose

CHTYP Kanaltyp

Byte	Bit 7 0					
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert 					

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 01h)

CHERR Kanalfehler

Byte	Bit 7 0
0	■ Bit 0: Kanalfehler Kanal 0

CHxERR kanalspezifisch

Byte	Bit 7 0					
0	 Kanalspezifischer Fehler Kanal 0 Bit 0: gesetzt bei Fehler in Projektierung bzw. Parametrierung Bit 21: reserviert Bit 3: gesetzt bei Kurzschluss der Brückenspeisespannung U_{EXC} Bit 54: reserviert Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung 					
17	reserviert					

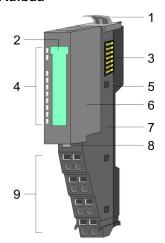
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

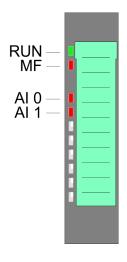
μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (µs-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1µs wieder bei 0 beginnt.

031-1CB30 - AI 2x16Bit 0...10V


3.17 031-1CB30 - AI 2x16Bit 0...10V

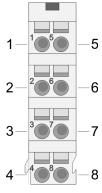
Eigenschaften

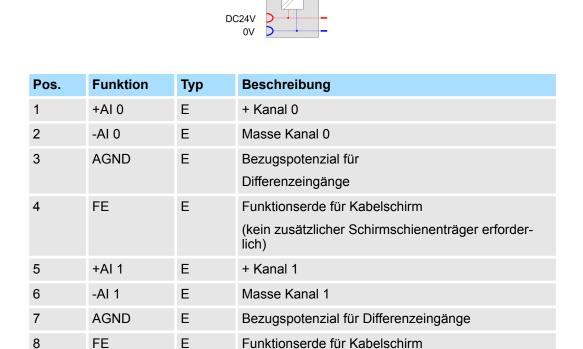

Das Elektronikmodul besitzt 2 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

- 2 analoge Eingänge
- Geeignet für Geber mit 0 ... 10V
- Alarm- und Diagnosefunktion
- Parametrierbare Störfrequenzunterdrückung (50/60Hz)
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen


RUN grün	MF rot	Al x ■ rot	Beschreibung
•		х	Bus-Kommunikation ist OK Modul-Status ist OK
		X	Bus-Kommunikation ist OK Modul-Status meldet Fehler
		X	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			Signal liegt außerhalb des MessbereichsFehler in der Parametrierung
nicht relevant	t: X		


Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

031-1CB30 - AI 2x16Bit 0...10V

Anschlüsse

AI 1 +

5

6

2 0

AGND

FΕ

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

(kein zusätzlicher Schirmschienenträger erforder-

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

lich)

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

031-1CB30 - Al 2x16Bit 0...10V > Technische Daten

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.17.1 Technische Daten

Bezeichnung SM 031 - Analoge Eingabe Modulkennung 040A 1543 Stromaufnahme/Verlustleistung 0 mA Stromaufnahme aus Rückwandbus 60 mA Verlustleistung 0,8 W Technische Daten Analoge Eingänge	Artikelnr.	031-1CB30
Stromaufnahme/Verlustleistung 60 mA Verlustleistung 0,8 W Technische Daten Analoge Eingänge	Bezeichnung	SM 031 - Analoge Eingabe
Stromaufnahme aus Rückwandbus 60 mA Verlustleistung 0,8 W Technische Daten Analoge Eingänge 2 Anzahl Eingänge 2 Leitungslänge geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge √ min. Eingangswiderstand im Spannungsbereich 200 kΩ Eingangsspannungsbereiche 0 V +10 V Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Gerundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgenze Stromeingänge (Strom) - Widerstandseingänge - Widerstandseingänge - Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	Modulkennung	040A 1543
Verlustleistung 0,8 W Technische Daten Analoge Eingänge 2 Anzahl Eingänge 2 Leitungslänge geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge ν min. Eingangswiderstand im Spannungsbereich 200 kΩ Eilngangsspannungsbereiche 4 ν-0.2% Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Gerbrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgenze Stromeingänge (Spannung) </td <td>Stromaufnahme/Verlustleistung</td> <td></td>	Stromaufnahme/Verlustleistung	
Technische Daten Analoge Eingänge Anzahl Eingänge 2 Leitungslänge geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge win. Eingangswiderstand im Spannungsbereich 200 kΩ Eingangsspannungsbereiche 00 V +10 V Gebrauchsfehlergrenze Spannungsbereiche +/-0,2% Gebrauchsfehlergrenze Spannungsbereiche wit SFU Grundfehlergrenze Spannungsbereiche wit SFU 2erstörgenze Spannungsbereiche mit SFU Zerstörgenze Spannungsbereiche mit SFU Zerstörgenze Spannung Tomax. Bingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche Gerundfehlergrenze Strombereiche int SFU Zerstörgrenze Strombereiche int SFU Zerstörgrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Strom) Viderstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche in SFU Gebrauchsfehlergrenze Widerstandsbereiche in SFU Gebrauchsfehlergrenze Widerstandsbereiche in SFU Grundfehlergrenze Widerstandsbereiche in SFU Grundfehlergrenze Widerstandsbereiche in SFU Grundfehlergrenze Widerstandsbereiche in SFU	Stromaufnahme aus Rückwandbus	60 mA
Anzahl Eingänge 2 Leitungslänge geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge √ min. Eingängswiderstand im Spannungsbereich 200 kΩ Eingängsspannungsbereiche 0 V +10 V Gebrauchsfehlergrenze Spannungsbereiche #-/-0,2% Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche it SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannungsbereiche mit SFU - Eingängswiderstand im Strombereich it SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingängswiderstand im Strombereich - Eingängsstrombereiche Gebrauchsfehlergrenze Strombereiche it SFU - Grundfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche it SFU - Grundfehlergrenze Strombereiche it SFU - Grundfehlergrenze Strombereiche it SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche it SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche it SFU - Grundfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche it SFU - Grundfehlergrenze Widerstandsbereiche it SFU -	Verlustleistung	0,8 W
Leitungslänge geschirmt 200 m Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge √ min. Eingangswiderstand im Spannungsbereich 200 kΩ Eingangsspannungsbereiche 0 V +10 V Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Gerundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Strom) - Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU -	Technische Daten Analoge Eingänge	
Lastnennspannung DC 24 V Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingänge ν min. Eingangswiderstand im Spannungsbereich 200 kΩ Eingangsspannungsbereiche 0 V +10 V Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Strom) - Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU -	Anzahl Eingänge	2
Stromaufnahme aus Lastspannung L+ (ohne Last) 20 mA Spannungseingånge ✓ min. Eingangswiderstand im Spannungsbereich 200 kΩ Eingangsspannungsbereiche 0 V +10 V Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgenze Spannung max. 30V Stromeingånge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Strom) - Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstand	Leitungslänge geschirmt	200 m
Spannungseingänge ν min. Eingangswiderstand im Spannungsbereich 200 kΩ Eingangsspannungsbereiche 0 V +10 V Gebrauchsfehlergrenze Spannungsbereiche +/-0,2% Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Strom) - Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsberei	Lastnennspannung	DC 24 V
min. Eingangswiderstand im Spannungsbereich Eingangsspannungsbereiche O V +10 V Gebrauchsfehlergrenze Spannungsbereiche #/-0,2% Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche #/-0,1% Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche +- Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Strom) - Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU -	Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Eingangsspannungsbereiche 0 V +10 V Gebrauchsfehlergrenze Spannungsbereiche +/-0,2% Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche int SFU - Zerstörgrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Strom) - Widerstandseingänge - Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Genundfehlergrenze Widerstandsbereiche - Genundfehlergrenze Widerstandsbereiche -	Spannungseingänge	✓
Gebrauchsfehlergrenze Spannungsbereiche +/-0,2% Gebrauchsfehlergrenze Spannungsbereiche mit SFU - Grundfehlergrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannungsbereiche mit SFU - Zerstörgrenze Spannung max. 30V Stromeingänge - max. Eingangswiderstand im Strombereich - Eingangsstrombereiche - Gebrauchsfehlergrenze Strombereiche - Gebrauchsfehlergrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Strombereiche mit SFU - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Strom) - Widerstandseingänge - Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gerundfehlergrenze Widerstandsbereiche -	min. Eingangswiderstand im Spannungsbereich	200 kΩ
Gebrauchsfehlergrenze Spannungsbereiche mit SFU Grundfehlergrenze Spannungsbereiche +/-0,1% Grundfehlergrenze Spannungsbereiche mit SFU Zerstörgrenze Spannung max. 30V Stromeingänge max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Strombereiche mit SFU Zerstörgrenze Strombereiche mit SFU Zerstörgrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche -	Eingangsspannungsbereiche	0 V +10 V
Grundfehlergrenze Spannungsbereiche +/-0,1% Grundfehlergrenze Spannung	Gebrauchsfehlergrenze Spannungsbereiche	+/-0,2%
Grundfehlergrenze Spannung Zerstörgrenze Spannung max. 30V Stromeingänge max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche imit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche imit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gerundfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gerundfehlergrenze Widerstandsbereiche Gerundfehlergrenze Widerstandsbereiche -	Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung Stromeingänge max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche imit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche imit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche imit SFU Gebrauchsfehlergrenze Widerstandsbereiche imit SFU Gebrauchsfehlergrenze Widerstandsbereiche imit SFU Grundfehlergrenze Widerstandsbereiche imit SFU Grundfehlergrenze Widerstandsbereiche imit SFU Grundfehlergrenze Widerstandsbereiche imit SFU Grundfehlergrenze Widerstandsbereiche imit SFU	Grundfehlergrenze Spannungsbereiche	+/-0,1%
Stromeingänge max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche it SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche it SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Grundfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Grundfehlergrenze Widerstandsbereiche Gerundfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche	Grundfehlergrenze Spannungsbereiche mit SFU	-
max. Eingangswiderstand im Strombereich Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche - Gerundfehlergrenze Widerstandsbereiche - Gerundfehlergrenze Widerstandsbereiche - Grundfehlergrenze Widerstandsbereiche -	Zerstörgrenze Spannung	max. 30V
Eingangsstrombereiche Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche it SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche Grundfehlergrenze Widerstandsbereiche Grundfehlergrenze Widerstandsbereiche Grundfehlergrenze Widerstandsbereiche	Stromeingänge	-
Gebrauchsfehlergrenze Strombereiche Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom)	max. Eingangswiderstand im Strombereich	-
Gebrauchsfehlergrenze Strombereiche mit SFU Grundfehlergrenze Strombereiche Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche Grundfehlergrenze Widerstandsbereiche Grundfehlergrenze Widerstandsbereiche	Eingangsstrombereiche	-
Grundfehlergrenze Strombereiche - Grundfehlergrenze Strombereiche mit SFU - Zerstörgrenze Stromeingänge (Spannung) - Zerstörgrenze Stromeingänge (Strom) - Widerstandseingänge - Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche -	Gebrauchsfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche	Gebrauchsfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche -	Grundfehlergrenze Strombereiche	-
Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche -	Grundfehlergrenze Strombereiche mit SFU	-
Widerstandseingänge - Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche -	Zerstörgrenze Stromeingänge (Spannung)	-
Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche -	Zerstörgrenze Stromeingänge (Strom)	-
Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche -	Widerstandseingänge	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche -	Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche -	Gebrauchsfehlergrenze Widerstandsbereiche	-
-	Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche mit SFU -	Grundfehlergrenze Widerstandsbereiche	-
	Grundfehlergrenze Widerstandsbereiche mit SFU	-

031-1CB30 - AI 2x16Bit 0...10V > Technische Daten

Artikelnr.	031-1CB30
Zerstörgrenze Widerstandseingänge	-
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	16
Messprinzip	sukzessive Approximation
Grundwandlungszeit	240 μs alle Kanäle
Störspannungsunterdrückung für Frequenz	>80dB bei 50Hz (UCM<9V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja, parametrierbar
Prozessalarm	ja, parametrierbar
Diagnosealarm	ja, parametrierbar
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	

031-1CB30 - Al 2x16Bit 0...10V > Technische Daten

Artikelnr.	031-1CB30
zwischen den Kanälen	
zwischen den Kanälen in Gruppen zu	
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 9 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	DC 1 V
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	4
Ausgangsbytes	0
Parameterbytes	20
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	60 g
Gewicht inklusive Zubehör	60 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1CB30 - Al 2x16Bit 0...10V > Parametrierdaten

3.17.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose*	00h	00h	3100h	01h
RES1	1	reserviert*	00h	00h	3101h	02h
LIMIT_EN	1	Grenzwertüberwachung*	00h	00h	3102h	03h
SUPR	1	Störfrequenzunterdrückung (SFU)	00h	01h	3103h	04h
CH0FN	1	Funktionsnummer Kanal 0	10h	80h	3104h	05h
RES7	1	reserviert	00h	80h	3105h	06h
CH0UL	2	Oberer Grenzwert Kanal 0	7FFFh	80h	3106h310 7h	07h
CH0LL	2	Unterer Grenzwert Kanal 0	8000h	80h	3108h310 9h	08h
CH1FN	1	Funktionsnummer Kanal 1	10h	81h	310Ah	09h
RES13	1	reserviert	00h	81h	310Bh	0Ah
CH1UL	2	Oberer Grenzwert Kanal 1	7FFFh	81h	310Ch31 0Dh	0Bh
CH1LL	2	Unterer Grenzwert Kanal 1	8000h	81h	310Eh31 0Fh	0Ch
* Diesen Datensatz dürfen Sie ausschließlich im STOP-Zustand übertragen.						

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm00h: sperren40h: freigeben

Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

LIMIT_EN Grenzwertüberwachung

Byte	Bit 7 0			
0	 Bit 0: Grenzwertüberwachung Kanal 0 (1: an) Bit 1: Grenzwertüberwachung Kanal 1 (1: an) Bit 7 2: reserviert 			

031-1CB30 - Al 2x16Bit 0...10V > Parametrierdaten

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 1, 0: Störfrequenzunterdrückung Kanal 0 00: deaktiviert 01: 60Hz 10: 50Hz Bit 3, 2: Störfrequenzunterdrückung Kanal 1 00: deaktiviert 01: 60Hz 10: 50Hz Bit 7 4: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(U)	(D)				
0 10V	11,76V	32511	7EFFh	Übersteuerung	D 27649	
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$	
(10h)	5V	13824	3600h		10	
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$	
	-1,76V	-4864	ED00h	Untersteuerung	27048	
0 10V	12,5V	20480	5000h	Übersteuerung	D 16294 U	
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$	
(20h)	5V	8192	2000h			
	0V	0	0000h		$U = D \cdot \frac{10}{16204}$	
	-2V	-3277	F333h	Untersteuerung	16384	

CHxUL CHxLL Oberer Grenzwert Unterer Grenzwert Kanal x

Sie können für jeden Kanal einen Oberen bzw. Unteren Grenzwert definieren. Hierbei können Sie ausschließlich Werte aus dem Nennbereich vorgeben, ansonsten erhalten Sie einen Parametrierfehler. Durch Angabe von 7FFFh für den oberen bzw. 8000h für den unteren Grenzwert wird der entsprechende Grenzwert deaktiviert. Sobald sich Ihr Messwert außerhalb eines Grenzwerts befindet und Sie die Grenzwertüberwachung aktiviert haben, wird ein Prozessalarm ausgelöst.

031-1CB30 - AI 2x16Bit 0...10V > Diagnose und Alarm

3.17.3 Diagnose und Alarm

Auslöser	Prozessalarm	Diagnosealarm	parametrierbar
Projektierungs-/ Parametrierungs-fehler	-	X	-
Messbereichsüberschreitung	-	X	-
Messbereichsunterschreitung	-	X	-
Grenzwertüberschreitung	X	-	X
Grenzwertunterschreitung	X	-	X
Diagnosepufferüberlauf	+	X	-
Kommunikationsfehler		X	-
Prozessalarm verloren	-	X	-

Prozessalarmdaten

Damit Sie auf asynchrone Ereignisse reagieren können, haben Sie die Möglichkeit Prozessalarme zu aktivieren. Ein Prozessalarm unterbricht den linearen Programmablauf und verzweigt je nach Master-System in eine bestimmte Interrupt-Routine. Hier können Sie entsprechend auf den Prozessalarm reagieren.

Bei CANopen werden die Prozessalarmdaten über ein Emergency-Telegramm übertragen.

Bei Zugriff über CPU, PROFIBUS und PROFINET erfolgt die Übertragung der Prozessalarmdaten mittels Diagnosetelegramm.

SX - Subindex für Zugriff über EtherCAT mit Index 5000h

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	SX
PRIT_OL	1	Oberer Grenzwert Kanal x überschritten	00h	02h
PRIT_UL	1	Unterer Grenzwert Kanal x überschritten	00h	03h
PRIT_US	2	µs-Ticker	00h	04h (High-Byte)
				05h (Low-Byte)

PRIT_OL Grenzwertüberschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberschreitung Kanal 0 Bit 1: Grenzwertüberschreitung Kanal 1 Bit 7 2: reserviert

PRIT_UL Grenzwertunterschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertunterschreitung Kanal 0 Bit 1: Grenzwertunterschreitung Kanal 1 Bit 7 2: reserviert

031-1CB30 - AI 2x16Bit 0...10V > Diagnose und Alarm

PRIT_US µs-Ticker

Byte	Bit 7 0
0 1	Wert des µs-Ticker bei Auftreten des Prozessalarms

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} -1 μ s wieder bei 0 beginnt. PRIT_US repräsentiert die unteren 2 Byte des μ s-Ticker-Werts (0 ... 2^{16} -1).

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose kommend bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm gehend. Wurde für einen Kanal ein Diagnosealarm kommend wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm gehend verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm kommend bis letzter Diagnosealarm gehend) leuchtet die MF-LED des Moduls.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- Prozessalarm verloren
- Versorgungsspannung fehlt
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh

031-1CB30 - Al 2x16Bit 0...10V > Diagnose und Alarm

Name	Bytes	Funktion	Default	DS	IX	SX
CH2ERRC H7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	■ Bit 3 0: Modulklasse – 0101b Analogbaugruppe
	Bit 4: Kanalinformation vorhandenBit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 5: reserviert Bit 6: gesetzt bei Prozessalarm verloren Bit 7: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	■ Bit 6 0: Kanaltyp - 70h: Digitaleingabe - 71h: Analogeingabe - 72h: Digitalausgabe - 73h: Analogausgabe - 74h: Analogeingabe/-ausgabe - 76h: Zähler ■ Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

031-1CB30 - Al 2x16Bit 0...10V > Diagnose und Alarm

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0				
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 				

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0					
0	Kanalspezifische Fehler: Kanal x:					
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 4 1: reserviert Bit 5: gesetzt bei Prozessalarm verloren Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung 					

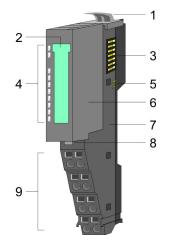
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

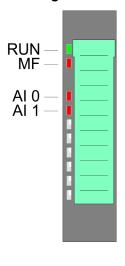
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1CB40 - AI 2x16Bit 0(4)...20mA


3.18 031-1CB40 - AI 2x16Bit 0(4)...20mA

Eigenschaften

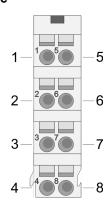
Das Elektronikmodul besitzt 2 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungs-versorgung potenzialgetrennt.

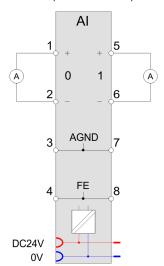

- 2 analoge Eingänge
- Geeignet für Geber mit 0 ... 20mA;
 - 4 ... 20mA mit externer Versorgung
- Alarm- und Diagnosefunktion
- Parametrierbare Störfrequenzunterdrückung (50/60Hz)
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x rot	Beschreibung
•		X	Bus-Kommunikation ist OK Modul-Status ist OK
•	•	x	Bus-Kommunikation ist OK Modul-Status meldet Fehler
	•	x	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler <i>∜ Kap.</i> 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
•		•	Fehler Kanal x ■ Signal liegt außerhalb des Messbereichs ■ Fehler in der Parametrierung
nicht releva	nt: X		

031-1CB40 - AI 2x16Bit 0(4)...20mA

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	Е	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	AGND	E	Bezugspotenzial für
			Differenzeingänge
4	FE	E	Funktionserde für Kabelschirm
			(kein zusätzlicher Schirmschienenträger erforderlich)
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	AGND	E	Bezugspotenzial für
			Differenzeingänge
8	FE	E	Funktionserde für Kabelschirm
			(kein zusätzlicher Schirmschienenträger erforderlich)

E: Eingang

Bei Einsatz von 2-Draht-Messumformern ist in die Messleitung eine externe Spannungsversorgung einzuschleifen.

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

031-1CB40 - AI 2x16Bit 0(4)...20mA > Technische Daten

_				
⊢ın.	nan	ana	reich	า
	yun			•

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.18.1 Technische Daten

Artikelnr.	031-1CB40
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	040B 1543
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	60 mA
Verlustleistung	0,7 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Spannungseingänge	-
min. Eingangswiderstand im Spannungsbereich	-
Eingangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	-
Stromeingänge	✓
max. Eingangswiderstand im Strombereich	60 Ω
Eingangsstrombereiche	0 mA +20 mA
	+4 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-0,2%
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	+/-0,1%
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	max. 24V
Zerstörgrenze Stromeingänge (Strom)	max. 40mA

031-1CB40 - AI 2x16Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1CB40
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	16
Messprinzip	sukzessive Approximation
Grundwandlungszeit	240 μs alle Kanäle
Störspannungsunterdrückung für Frequenz	>80dB (UCM<4V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja, parametrierbar
Prozessalarm	ja, parametrierbar
Diagnosealarm	ja, parametrierbar

031-1CB40 - AI 2x16Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1CB40
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	
zwischen den Kanälen in Gruppen zu	
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 4 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	DC 3 V
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	4
Ausgangsbytes	0
Parameterbytes	20
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	60 g
Gewicht inklusive Zubehör	60 g
Gewicht Brutto	74 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	

031-1CB40 - AI 2x16Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1CB40
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1CB40 - AI 2x16Bit 0(4)...20mA > Parametrierdaten

3.18.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose*	00h	00h	3100h	01h
RES1	1	reserviert*	00h	00h	3101h	02h
LIMIT_EN	1	Grenzwertüberwachung*	00h	00h	3102h	03h
SUPR	1	Störfrequenzunterdrückung (SFU)	00h	01h	3103h	04h
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3104h	05h
RES7	1	reserviert	00h	80h	3105h	06h
CH0UL	2	Oberer Grenzwert Kanal 0	7FFFh	80h	3106h31 07h	07h
CH0LL	2	Unterer Grenzwert Kanal 0	8000h	80h	3108h31 09h	08h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	310Ah	09h
RES13	1	reserviert	00h	81h	310Bh	0Ah
CH1UL	2	Oberer Grenzwert Kanal 1	7FFFh	81h	310Ch31 0Dh	0Bh
CH1LL	2	Unterer Grenzwert Kanal 1	8000h	81h	310Eh31 0Fh	0Ch
* Diesen Datensatz dürfen Sie ausschließlich im STOP-Zustand übertragen.						

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm- 00h: sperren- 40h: freigeben

Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

LIMIT_EN Grenzwertüberwachung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberwachung Kanal 0 (1: an) Bit 1: Grenzwertüberwachung Kanal 1 (1: an) Bit 7 2: reserviert

031-1CB40 - AI 2x16Bit 0(4)...20mA > Parametrierdaten

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 1, 0: Störfrequenzunterdrückung Kanal 0 00: deaktiviert 01: 60Hz 10: 50Hz Bit 3, 2: Störfrequenzunterdrückung Kanal 1 00: deaktiviert 01: 60Hz 10: 50Hz Bit 7 4: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

0(4) ... 20mA

Messbereich	Strom	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(I)	(D)			
0 20mA Siemens	23,52mA	32511	7EFFh	Übersteuerung	D 27649 I
	20mA	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{I}{20}$
S7-Format	10mA	13824	3600h		
(31h)	0mA	0	0000h		$I = D \cdot \frac{20}{27648}$
	-3,52mA	-4864	ED00h	Untersteuerung	27648
0 20mA	25,00mA	20480	5000h	Übersteuerung	D 16204 I
Siemens	20mA	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{I}{20}$
S5-Format	10mA	8192	2000h		
(41h)	0mA	0	0000h		$I = D \cdot \frac{20}{16384}$
	-4,00mA	-3277	F333h	Untersteuerung	16384
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{I-4}{16}$
Siemens	20mA	27648	6C00h	Nennbereich	$D = 27048 \cdot \frac{16}{16}$
S7-Format	12mA	13824	3600h		$I = D \cdot \frac{16}{27648} + 4$
(30h)	4mA	0	0000h		$I = D \cdot \frac{1}{27648} + 4$
	1,19mA	-4864	ED00h	Untersteuerung	
4 20mA	24,00mA	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{I-4}{16}$
Siemens S5-Format	20mA	16384	4000h	Nennbereich	D = 10384 · 16
	12mA	8192	2000h		16
(40h)	4mA	0	0000h		$I = D \cdot \frac{16}{16384} + 4$
	0,8mA	-3277	F333h	Untersteuerung	

031-1CB40 - Al 2x16Bit 0(4)...20mA > Diagnose und Alarm

CHxUL CHxLL Oberer Grenzwert Unterer Grenzwert Kanal x Sie können für jeden Kanal einen Oberen bzw. Unteren Grenzwert definieren. Hierbei können Sie ausschließlich Werte aus dem Nennbereich vorgeben, ansonsten erhalten Sie einen Parametrierfehler. Durch Angabe von 7FFFh für den oberen bzw. 8000h für den unteren Grenzwert wird der entsprechende Grenzwert deaktiviert. Sobald sich Ihr Messwert außerhalb eines Grenzwerts befindet und Sie die Grenzwertüberwachung aktiviert haben, wird ein Prozessalarm ausgelöst.

3.18.3 Diagnose und Alarm

Auslöser	Prozessalarm	Diagnosealarm	parametrierbar
Projektierungs-/ Parametrierungs-fehler	-	X	-
Messbereichsüberschreitung	-	X	-
Messbereichsunterschreitung	-	X	-
Grenzwertüberschreitung	X	-	X
Grenzwertunterschreitung	X	-	X
Diagnosepufferüberlauf	-	X	-
Kommunikationsfehler	-	X	-
Prozessalarm verloren	-	X	-

Prozessalarmdaten

Damit Sie auf asynchrone Ereignisse reagieren können, haben Sie die Möglichkeit Prozessalarme zu aktivieren. Ein Prozessalarm unterbricht den linearen Programmablauf und verzweigt je nach Master-System in eine bestimmte Interrupt-Routine. Hier können Sie entsprechend auf den Prozessalarm reagieren.

Bei CANopen werden die Prozessalarmdaten über ein Emergency-Telegramm übertragen.

Bei Zugriff über CPU, PROFIBUS und PROFINET erfolgt die Übertragung der Prozessalarmdaten mittels Diagnosetelegramm.

SX - Subindex für Zugriff über EtherCAT mit Index 5000h

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	SX
PRIT_OL	1	Oberer Grenzwert Kanal x überschritten	00h	02h
PRIT_UL	1	Unterer Grenzwert Kanal x überschritten	00h	03h
PRIT_US	2	µs-Ticker	00h	04h (High-Byte)
				05h (Low-Byte)

PRIT_OL Grenzwertüberschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberschreitung Kanal 0 Bit 1: Grenzwertüberschreitung Kanal 1 Bit 7 2: reserviert

031-1CB40 - AI 2x16Bit 0(4)...20mA > Diagnose und Alarm

PRIT_UL Grenzwertunterschreitung

Byte	Bit 7 0	
0	 Bit 0: Grenzwertunterschreitung Kanal 0 Bit 1: Grenzwertunterschreitung Kanal 1 Bit 7 2: reserviert 	

PRIT_US µs-Ticker

Byte	Bit 7 0
0 1	Wert des µs-Ticker bei Auftreten des Prozessalarms

µs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt. PRIT_US repräsentiert die unteren 2 Byte des μ s-Ticker-Werts (0 ... 2^{16} -1).

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose kommend bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm gehend. Wurde für einen Kanal ein Diagnosealarm kommend wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm gehend verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm kommend bis letzter Diagnosealarm gehend) leuchtet die MF-LED des Moduls.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- Prozessalarm verloren
- Versorgungsspannung fehlt
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h

031-1CB40 - AI 2x16Bit 0(4)...20mA > Diagnose und Alarm

Name	Bytes	Funktion	Default	DS	IX	SX
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERRCH7 ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0	
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 5: reserviert Bit 6: gesetzt bei Prozessalarm verloren Bit 7: reserviert 	

CHTYP Kanaltyp

Byte	Bit 7 0
0	■ Bit 6 0: Kanaltyp - 70h: Digitaleingabe - 71h: Analogeingabe - 72h: Digitalausgabe - 73h: Analogausgabe - 74h: Analogeingabe/-ausgabe - 76h: Zähler ■ Bit 7: reserviert

031-1CB40 - Al 2x16Bit 0(4)...20mA > Diagnose und Alarm

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0		
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 		

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0		
0	Kanalspezifische Fehler: Kanal x:		
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 4 1: reserviert Bit 5: gesetzt bei Prozessalarm verloren Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung 		

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

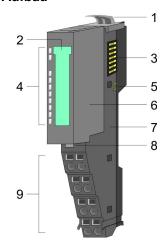
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

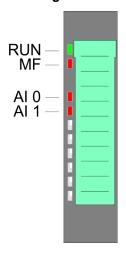
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1CB70 - AI 2x16Bit ±10V


3.19 031-1CB70 - AI 2x16Bit ±10V

Eigenschaften

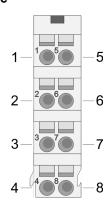
Das Elektronikmodul besitzt 2 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

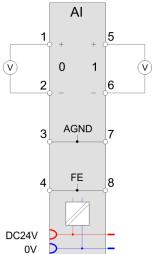

- 2 analoge Eingänge
- Geeignet für Geber mit ±10V, 0 ... 10V
- Alarm- und Diagnosefunktion
- Parametrierbare Störfrequenzunterdrückung (50/60Hz)
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x ☐ rot	Beschreibung
•		X	Bus-Kommunikation ist OK Modul-Status ist OK
		X	Bus-Kommunikation ist OK Modul-Status meldet Fehler
	•	X	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler <i>∜</i> Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
•		•	Fehler Kanal x ■ Signal liegt außerhalb des Messbereichs ■ Fehler in der Parametrierung
nicht relevant: X			

031-1CB70 - AI 2x16Bit ±10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	AGND	E	Bezugspotenzial für
			Differenzeingänge
4	FE	E	Funktionserde für Kabelschirm
			(kein zusätzlicher Schirmschienenträger erforderlich)
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	AGND	E	Bezugspotenzial für
			Differenzeingänge
8	FE	E	Funktionserde für Kabelschirm
			(kein zusätzlicher Schirmschienenträger erforderlich)

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

031-1CB70 - AI 2x16Bit ±10V > Technische Daten

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.19.1 Technische Daten

Artikelnr.	031-1CB70
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	040C 1543
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	60 mA
Verlustleistung	0,8 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Spannungseingänge	✓
min. Eingangswiderstand im Spannungsbereich	200 kΩ
Eingangsspannungsbereiche	-10 V +10 V
	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,2%
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	+/-0,1%
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	max. 30V
Stromeingänge	-
max. Eingangswiderstand im Strombereich	-
Eingangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	-
Zerstörgrenze Stromeingänge (Strom)	-
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-

031-1CB70 - Al 2x16Bit ±10V > Technische Daten

Grundfehlergrenze Widerstandsbereiche mit SFU - Widerstandsthermometereingänge - Widerstandsthermometerbereiche - Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU - Grundfehlergrenze Widerstandsthermometerbereiche mit SFU - Grundfehlergrenze Widerstandsthermometerbereiche mit SFU - Zerstorgenze Widerstandsthermometerbereiche mit SFU - Thermoelementeingänge - Thermoelementeingänge - Gebrauchsfehlergrenze Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergenze Thermoelementbereiche mit SFU - Famperaturkompensation parametrierbar - Temperaturkompensation extern - Temperaturkompensation intern - Temperaturfehler der internen Kompensation - Technische Einheit der Temperaturmessung <	Artikelnr.	031-1CB70
Widerstandsthermometereingänge - Widerstandsthermometerbereiche - Gebrauchsfehlergrenze Widerstandsthermometerbereiche strist SFU - Grundfehlergrenze Widerstandsthermometerbereiche mit SFU - Grundfehlergrenze Widerstandsthermometerbereiche mit SFU - Zerstörgrenze Widerstandsthermometereingänge - Thermoelementeingänge - Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Zerstörgrenze Thermoelementbereiche mit SFU - Zerstörgenze Thermoelementbereiche mit SFU - Zerstörgenze Thermoelementbereiche mit SFU - Temperaturkompensation parametirerbar - Temperaturkompensation extern - Temperaturkompensation intern - Temperaturkompensation intern - Messprinzip sukzessive Approximation Grundwaldungszeit sukzessive Approximation Storspannungs	Grundfehlergrenze Widerstandsbereiche mit SFU	-
Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche itt SFU Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Grentsforgrenze Widerstandsthermometereingänge Thermoelementlengänge Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche in SFU Grundfehlergrenze Thermoelementeriche in SFU Grundfehlergrenze Thermoelementeriche in SFU Grund	Zerstörgrenze Widerstandseingänge	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche int SFU Grundfehlergrenze Thermoelementerionange Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturkompensation intern Temperaturkompensation intern Temperaturkompensation intern Technische Einheit der Temperaturmessung Aufßesung in Bit Messprinzip sukzessive Approximation Grundwandlungszeit Storspannungsunterdrückung für Frequenz 9-80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige Alarme ja, parametrierbar piag narametrierbar Diagnosefunktion piagnosefunktion piagnoseinformation auslesbar Modulstatus Modulfehleranzeige modellicheranzeige	Widerstandsthermometereingänge	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche sFU Zerstörgrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometerebreingänge	Widerstandsthermometerbereiche	-
mit SFU Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometereingänge Thermoelementeingänge Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip sukzessive Approximation Grundwandlungszeit Störspannungsunterdrückung für Frequenz Stotspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Status, Alarm, Diagnosen Status, Alarm, Diagnosen Jia, parametrierbar Jia, parametrierbar Diagnosealarm Diagnosealarm Diagnoseinformation auslesbar Mödulstatus Modulsfelleranzeige Modulfehleranzeige möglich Modulfehleranzeige möglich Modulfehleranzeige möglich server auch erwendentereine mit SFU	Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstorgrenze Widerstandsthermometereingänge Thermoelementeingänge Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation parametrierbar Temperaturkompensation intern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip Grundwandlungszeit Störspannungsunterdrückung für Frequenz Störspannungsunterdrückung für Frequenz Statusanzeige Alarme Prozessalarm Diagnosealarm Diagnoseinformation auslesbar Modulstatus Modulfehleranzeige rote LED Modulfehleranzeige rote LED		-
SFU Zerstörgenze Widerstandsthermonetereingänge - Thermoelementleingänge - Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Zerstörgenze Thermoelementbereiche mit SFU - Zerstörgenze Thermoelementbereiche mit SFU - Temperaturkompensation parametrierbar - Temperaturkompensation parametrierbar - Temperaturkompensation extern - Temperaturfehler der internen Kompensation - Temperaturfehler der internen Kompensation - Technische Einheit der Temperaturmessung - Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80B bei 50Hz (UCM Status, Alarm, Diagnosen ja, parametrierbar Diagnosealarm ja, parametrierbar Diagnosealnformation auslesb	Grundfehlergrenze Widerstandsthermometerbereiche	-
Thermoelementeingange Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche int SFU Grundfehlergrenze Thermoelementbereiche int SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip sukzessive Approximation Grundwandlungszeit 240 µs alle Kanale Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Status, Alarm, Diagnosen Statusanzeige Alarme prozessalarm piagnosefunktion piagnoseinformation auslesbar Modulstatus Modulfehleranzeige rote LED Modulfehleranzeige rote LED		-
Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche - Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge - Temperaturkompensation parametrierbar - Temperaturkompensation extern - Temperaturkompensation intern - Temperaturfehler der internen Kompensation - Technische Einheit der Temperaturmessung - Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige ja parametrierbar Prozessalarm ja, parametrierbar Diagnoseafunktion ja parametrierbar Diagnoseinformation auslesbar möglich Modulfehleranzeige rote LED Modulfehleranzeige rote	Zerstörgrenze Widerstandsthermometereingänge	-
Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche Grundfehlergrenze Thermoelementbereiche Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz 800B bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige ja, parametrierbar Prozessalarm ja, parametrierbar Diagnosefunktion ja Diagnoseinformation auslesbar Modulstatus Modulfehleranzeige rote LED	Thermoelementeingänge	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche Grundfehlergrenze Thermoelementbereiche int SFU Zerstörgrenze Thermoelementeringänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Status, Alarm, Diagnosen Statusnzeige ja, parametrierbar prozessalarm Diagnosefunktion jia, parametrierbar Diagnosefunktion Diagnoseinformation auslesbar Modulstatus Modulfehleranzeige rote LED	Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge - Temperaturkompensation parametrierbar - Temperaturkompensation extern - Temperaturkompensation intern - Temperaturfehler der internen Kompensation - Technische Einheit der Temperaturmessung - Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige Alarme prozessalarm pia, parametrierbar piagnosefunktion piagnoseinformation auslesbar Modulstatus Modulfehleranzeige rote LED modellefeleranzeige rote LED	Gebrauchsfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Status, Alarm, Diagnosen Statusanzeige Alarme prozessalarm piagnosealarm piagnosefunktion ja parametrierbar piagnoseinformation auslesbar Modulstatus Modulfehleranzeige rete Alarme prote LED Modulfehleranzeige	Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige ja, parametrierbar Prozessalarm ja, parametrierbar Diagnosealarm Diagnoseinformation auslesbar Modulstatus Modulfehleranzeige rote LED Modulfehleranzeige reachier in ernem terierbar reachier in ernem terierbar prozessalarm p	Grundfehlergrenze Thermoelementbereiche	-
Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Statusanzeige ja Alarme ja, parametrierbar Prozessalarm Diagnosealarm Diagnosefunktion Diagnoseinformation auslesbar Modulfehleranzeige Modulfehleranzeige received	Grundfehlergrenze Thermoelementbereiche mit SFU	-
Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip Sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige ja Alarme ja, parametrierbar Prozessalarm Diagnosealarm Diagnosefunktion Diagnosefunktion pia Diagnoseinformation auslesbar Modulstatus Modulfehleranzeige rote LED	Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip Sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige ja, parametrierbar Prozessalarm Diagnosealarm Diagnosefunktion ja, parametrierbar Diagnoseinformation auslesbar Modulfehleranzeige Modulfehleranzeige rete LED	Temperaturkompensation parametrierbar	-
Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip Sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige ja Alarme ja, parametrierbar Prozessalarm Diagnosealarm Diagnosefunktion Diagnosefunktion Diagnoseinformation auslesbar Modulstatus Modulfehleranzeige rote LED	Temperaturkompensation extern	-
Technische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige ja, parametrierbar Prozessalarm ja, parametrierbar Diagnosealarm ja, parametrierbar Diagnosefunktion ja Diagnoseinformation auslesbar möglich Modulstatus Modulfehleranzeige rote LED	Temperaturkompensation intern	-
Auflösung in Bit Messprinzip Grundwandlungszeit Störspannungsunterdrückung für Frequenz Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Statusanzeige Ja Alarme ja, parametrierbar Prozessalarm Diagnosealarm Diagnosefunktion Diagnoseinformation auslesbar Modulstatus Modulfehleranzeige 16 Sukzessive Approximation 240 µs alle Kanäle >80dB bei 50Hz (UCM<9V) 19 Status (UCM<9V) 19 Ja Ja Ja Ja Ja Ja Ja Ja Ja J	Temperaturfehler der internen Kompensation	-
Messprinzip sukzessive Approximation Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige ja parametrierbar Prozessalarm ja, parametrierbar Diagnosealarm ja, parametrierbar Diagnosefunktion ja Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED	Technische Einheit der Temperaturmessung	-
Grundwandlungszeit 240 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige ja Alarme ja, parametrierbar Prozessalarm ja, parametrierbar Diagnosealarm ja, parametrierbar Diagnosefunktion ja Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED	Auflösung in Bit	16
Störspannungsunterdrückung für Frequenz >80dB bei 50Hz (UCM<9V) Status, Alarm, Diagnosen Statusanzeige ja Alarme ja, parametrierbar Prozessalarm ja, parametrierbar Diagnosealarm ja, parametrierbar Diagnosefunktion ja Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED	Messprinzip	sukzessive Approximation
Status, Alarm, Diagnosen Statusanzeige ja Alarme ja, parametrierbar Prozessalarm ja, parametrierbar Diagnosealarm ja, parametrierbar Diagnosefunktion ja Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED	Grundwandlungszeit	240 μs alle Kanäle
Statusanzeige ja Alarme ja, parametrierbar Prozessalarm ja, parametrierbar Diagnosealarm ja, parametrierbar Diagnosefunktion ja Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED	Störspannungsunterdrückung für Frequenz	>80dB bei 50Hz (UCM<9V)
Alarme ja, parametrierbar Prozessalarm ja, parametrierbar Diagnosealarm ja, parametrierbar Diagnosefunktion ja Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED	Status, Alarm, Diagnosen	
Prozessalarm ja, parametrierbar Diagnosealarm ja, parametrierbar Diagnosefunktion ja Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED	Statusanzeige	ja
Diagnosealarm ja, parametrierbar Diagnosefunktion ja Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED	Alarme	ja, parametrierbar
DiagnosefunktionjaDiagnoseinformation auslesbarmöglichModulstatusgrüne LEDModulfehleranzeigerote LED	Prozessalarm	ja, parametrierbar
Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED	Diagnosealarm	ja, parametrierbar
Modulstatus grüne LED Modulfehleranzeige rote LED	Diagnosefunktion	ja
Modulfehleranzeige rote LED	Diagnoseinformation auslesbar	möglich
-	Modulstatus	grüne LED
Kanalfehleranzeige rote LED pro Kanal	Modulfehleranzeige	rote LED
	Kanalfehleranzeige	rote LED pro Kanal

031-1CB70 - AI 2x16Bit ±10V > Technische Daten

Artikelnr.	031-1CB70
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 9 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	DC 1 V
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	4
Ausgangsbytes	0
Parameterbytes	20
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g
Gewicht inklusive Zubehör	61 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1CB70 - Al 2x16Bit ±10V > Parametrierdaten

3.19.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose*	00h	00h	3100h	01h
RES1	1	reserviert*	00h	00h	3101h	02h
LIMIT_EN	1	Grenzwertüberwachung*	00h	00h	3102h	03h
SUPR	1	Störfrequenzunterdrückung (SFU)	00h	01h	3103h	04h
CH0FN	1	Funktionsnummer Kanal 0	12h	80h	3104h	05h
RES7	1	reserviert	00h	80h	3105h	06h
CH0UL	2	Oberer Grenzwert Kanal 0	7FFFh	80h	3106h310 7h	07h
CH0LL	2	Unterer Grenzwert Kanal 0	8000h	80h	3108h310 9h	08h
CH1FN	1	Funktionsnummer Kanal 1	12h	81h	310Ah	09h
RES13	1	reserviert	00h	81h	310Bh	0Ah
CH1UL	2	Oberer Grenzwert Kanal 1	7FFFh	81h	310Ch31 0Dh	0Bh
CH1LL	2	Unterer Grenzwert Kanal 1	8000h	81h	310Eh310 Fh	0Ch
* Diesen Datensatz o	lürfen Sie ausschli	eßlich im STOP-Zustand übertragen.				

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm00h: sperren40h: freigeben

Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

LIMIT_EN Grenzwertüberwachung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberwachung Kanal 0 (1: an) Bit 1: Grenzwertüberwachung Kanal 1 (1: an) Bit 7 2: reserviert

031-1CB70 - Al 2x16Bit ±10V > Parametrierdaten

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 1, 0: Störfrequenzunterdrückung Kanal 0 00: deaktiviert 01: 60Hz 10: 50Hz Bit 3, 2: Störfrequenzunterdrückung Kanal 1 00: deaktiviert 01: 60Hz 10: 50Hz Bit 7 4: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

±10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(U)	(D)				
±10V	11,76V	32511	7EFFh	Übersteuerung	D = 27649	
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$	
(12h)	5V	13824	3600h		10	
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$	
	-5V	-13824	CA00h		27048	
	-10V	-27648	9400h			
	-11,76V	-32512	8100h	Untersteuerung		
±10V	12,5V	20480	5000h	Übersteuerung	D 16294 U	
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$	
(22h)	5V	8192	2000h			
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$	
	-5V	-8192	E000h		16384	
	-10V	-16384	C000h			
	-12,5V	-20480	B000h	Untersteuerung		

031-1CB70 - Al 2x16Bit ±10V > Parametrierdaten

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	D = 27649
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(10h)	5V	13824	3600h		10
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-1,76V	-4864	ED00h	Untersteuerung	2/040
0 10V	12,5V	20480	5000h	Übersteuerung	D 16394 U
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$
(20h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$
	-2V	-3277	F333h	Untersteuerung	16384

CHxUL / CHxLL Oberer Grenzwert Unterer Grenzwert Kanal x

Sie können für jeden Kanal einen Oberen bzw. Unteren Grenzwert definieren. Hierbei können Sie ausschließlich Werte aus dem Nennbereich vorgeben, ansonsten erhalten Sie einen Parametrierfehler. Durch Angabe von 7FFFh für den oberen bzw. 8000h für den unteren Grenzwert wird der entsprechende Grenzwert deaktiviert.

Sobald sich Ihr Messwert außerhalb eines Grenzwerts befindet und Sie die Grenzwertüberwachung aktiviert haben, wird ein Prozessalarm ausgelöst.

031-1CB70 - AI 2x16Bit ±10V > Diagnose und Alarm

3.19.3 Diagnose und Alarm

Auslöser	Prozessalarm	Diagnosealarm	parametrierbar
Projektierungs- / Parametrierungs-fehler	-	X	-
Messbereichsüberschreitung	-	X	-
Messbereichsunterschreitung	-	X	-
Grenzwertüberschreitung	X	-	X
Grenzwertunterschreitung	X	-	X
Diagnosepufferüberlauf	-	X	-
Kommunikationsfehler	-	X	-
Prozessalarm verloren	-	X	-

Prozessalarmdaten

Damit Sie auf asynchrone Ereignisse reagieren können, haben Sie die Möglichkeit Prozessalarme zu aktivieren. Ein Prozessalarm unterbricht den linearen Programmablauf und verzweigt je nach Master-System in eine bestimmte Interrupt-Routine. Hier können Sie entsprechend auf den Prozessalarm reagieren.

Bei CANopen werden die Prozessalarmdaten über ein Emergency-Telegramm übertragen.

Bei Zugriff über CPU, PROFIBUS und PROFINET erfolgt die Übertragung der Prozessalarmdaten mittels Diagnosetelegramm.

SX - Subindex für Zugriff über EtherCAT mit Index 5000h

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	SX
PRIT_OL	1	Oberer Grenzwert Kanal x überschritten	00h	02h
PRIT_UL	1	Unterer Grenzwert Kanal x überschritten	00h	03h
PRIT_US	2	µs-Ticker	00h	04h (High-Byte)
				05h (Low-Byte)

PRIT_OL Grenzwertüberschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberschreitung Kanal 0 Bit 1: Grenzwertüberschreitung Kanal 1 Bit 7 2: reserviert

PRIT_UL Grenzwertunterschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertunterschreitung Kanal 0 Bit 1: Grenzwertunterschreitung Kanal 1 Bit 7 2: reserviert

031-1CB70 - AI 2x16Bit ±10V > Diagnose und Alarm

PRIT_US µs-Ticker

Byte	Bit 7 0
0 1	Wert des µs-Ticker bei Auftreten des Prozessalarms

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} -1 μ s wieder bei 0 beginnt. PRIT_US repräsentiert die unteren 2 Byte des μ s-Ticker-Werts (0 ... 2^{16} -1).

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose kommend bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm gehend. Wurde für einen Kanal ein Diagnosealarm kommend wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm gehend verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm kommend bis letzter Diagnosealarm gehend) leuchtet die MF-LED des Moduls.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- Prozessalarm verloren
- Versorgungsspannung fehlt
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh

031-1CB70 - AI 2x16Bit ±10V > Diagnose und Alarm

Name	Bytes	Funktion	Default	DS	IX	SX
CH2ERRCH 7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	■ Bit 3 0: Modulklasse – 0101b Analogbaugruppe
	Bit 4: Kanalinformation vorhandenBit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 5: reserviert Bit 6: gesetzt bei Prozessalarm verloren Bit 7: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 ■ Bit 6 0: Kanaltyp - 70h: Digitaleingabe - 71h: Analogeingabe - 72h: Digitalausgabe - 73h: Analogausgabe - 74h: Analogeingabe/-ausgabe - 76h: Zähler ■ Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

031-1CB70 - AI 2x16Bit ±10V > Diagnose und Alarm

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0	
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 	

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 4 1: reserviert Bit 5: gesetzt bei Prozessalarm verloren Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

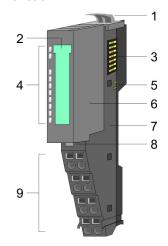
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

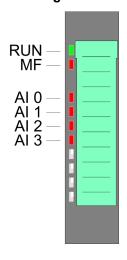
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1CD30 - AI 4x16Bit 0...10V


3.20 031-1CD30 - AI 4x16Bit 0...10V

Eigenschaften

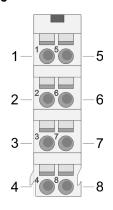
Das Elektronikmodul besitzt 4 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

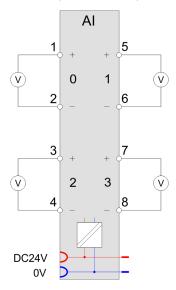

- 4 analoge Eingänge
- Geeignet für Geber mit 0 ... 10V
- Alarm- und Diagnosefunktion
- Parametrierbare Störfrequenzunterdrückung (50/60Hz)
- 16Bit Auflösung
- ∜ Kap. 3.21 "031-1CD35 AI 4x16Bit 0...10V" Seite 236 mit eingeschränktem Parametersatz

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x rot	Beschreibung
		X	Bus-Kommunikation ist OK Modul-Status ist OK
		X	Bus-Kommunikation ist OK Modul-Status meldet Fehler
		X	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler & Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
•		•	Fehler Kanal x ■ Signal liegt außerhalb des Messbereichs ■ Fehler in der Parametrierung
nicht relevar	nt: X		

031-1CD30 - AI 4x16Bit 0...10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	+AI 2	E	+ Kanal 2
4	-AI 2	E	Masse Kanal 2
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	+AI 3	E	+ Kanal 3
8	-AI 3	E	Masse Kanal 3

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	AI 3	2	Analogwert Kanal 3	6401h/s+3	04h

031-1CD30 - AI 4x16Bit 0...10V > Technische Daten

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.20.1 Technische Daten

Artikelnr.	031-1CD30
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	040D 1544
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	65 mA
Verlustleistung	0,9 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	25 mA
Spannungseingänge	✓
min. Eingangswiderstand im Spannungsbereich	200 kΩ
Eingangsspannungsbereiche	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,2%
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	+/-0,1%
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	max. 30V
Stromeingänge	-
max. Eingangswiderstand im Strombereich	-
Eingangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	-
Zerstörgrenze Stromeingänge (Strom)	-
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-

031-1CD30 - AI 4x16Bit 0...10V > Technische Daten

Artikelnr.	031-1CD30
Zerstörgrenze Widerstandseingänge	-
Widerstandsthermometereingänge	
Widerstandsthermometerbereiche	
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	16
Messprinzip	sukzessive Approximation
Grundwandlungszeit	480 μs alle Kanäle
Störspannungsunterdrückung für Frequenz	>80dB bei 50Hz (UCM<9V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja, parametrierbar
Prozessalarm	ja, parametrierbar
Diagnosealarm	ja, parametrierbar
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	

031-1CD30 - AI 4x16Bit 0...10V > Technische Daten

Artikelnr.	031-1CD30
zwischen den Kanälen	
zwischen den Kanälen in Gruppen zu	
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 9 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	8
Ausgangsbytes	0
Parameterbytes	32
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g
Gewicht inklusive Zubehör	61 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1CD30 - AI 4x16Bit 0...10V > Parametrierdaten

3.20.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose*	00h	00h	3100h	01h
RES1	1	reserviert*	00h	00h	3101h	02h
LIMIT_EN	1	Grenzwertüberwachung*	00h	00h	3102h	03h
SUPR	1	Störfrequenzunterdrückung (SFU)	00h	01h	3103h	04h
CH0FN	1	Funktionsnummer Kanal 0	10h	80h	3104h	05h
RES7	1	reserviert	00h	80h	3105h	06h
CH0UL	2	Oberer Grenzwert Kanal 0	7FFFh	80h	3106h310 7h	07h
CH0LL	2	Unterer Grenzwert Kanal 0	8000h	80h	3108h310 9h	08h
CH1FN	1	Funktionsnummer Kanal 1	10h	81h	310Ah	09h
RES13	1	reserviert	00h	81h	310Bh	0Ah
CH1UL	2	Oberer Grenzwert Kanal 1	7FFFh	81h	310Ch31 0Dh	0Bh
CH1LL	2	Unterer Grenzwert Kanal 1	8000h	81h	310Eh310 Fh	0Ch
CH2FN	1	Funktionsnummer Kanal 2	10h	82h	3110h	0Dh
RES19	1	reserviert	00h	82h	3111h	0Eh
CH2UL	2	Oberer Grenzwert Kanal 2	7FFFh	82h	3112h311 3h	0Fh
CH2LL	2	Unterer Grenzwert Kanal 2	8000h	82h	3114h311 5h	10h
CH3FN	1	Funktionsnummer Kanal 3	10h	83h	3116h	11h
RES25	1	reserviert	00h	83h	3117h	12h
CH3UL	2	Oberer Grenzwert Kanal 3	7FFFh	83h	3118h311 9h	13h
CH3LL	2	Unterer Grenzwert Kanal 3	8000h	83h	311Ah311 Bh	14h
* Diesen Datensatz dürfen Sie ausschließlich im STOP-Zustand übertragen.						

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm- 00h: sperren- 40h: freigeben

031-1CD30 - AI 4x16Bit 0...10V > Parametrierdaten

Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

LIMIT_EN Grenzwertüberwachung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberwachung Kanal 0 (1: an) Bit 1: Grenzwertüberwachung Kanal 1 (1: an) Bit 2: Grenzwertüberwachung Kanal 2 (1: an) Bit 3: Grenzwertüberwachung Kanal 3 (1: an) Bit 7 4: reserviert

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 1, 0: Störfrequenzunterdrückung Kanal 0 Bit 3, 2: Störfrequenzunterdrückung Kanal 1 Bit 5, 4: Störfrequenzunterdrückung Kanal 2 Bit 7, 6: Störfrequenzunterdrückung Kanal 3 00: deaktiviert 01: 60Hz 10: 50Hz
	z.B.: 10101010: alle Kanäle Störfrequenzunterdrückung 50Hz

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(10h)	5V	13824	3600h		10
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-1,76V	-4864	ED00h	Untersteuerung	27048
0 10V	12,5V	20480	5000h	Übersteuerung	D 16294 U
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$
(20h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$
	-2V	-3277	F333h	Untersteuerung	16384

031-1CD30 - AI 4x16Bit 0...10V > Diagnose und Alarm

CHxUL CHxLL Oberer Grenzwert Unterer Grenzwert Kanal x Sie können für jeden Kanal einen Oberen bzw. Unteren Grenzwert definieren. Hierbei können Sie ausschließlich Werte aus dem Nennbereich vorgeben, ansonsten erhalten Sie einen Parametrierfehler. Durch Angabe von 7FFFh für den oberen bzw. 8000h für den unteren Grenzwert wird der entsprechende Grenzwert deaktiviert. Sobald sich Ihr Messwert außerhalb eines Grenzwerts befindet und Sie die Grenzwertüberwachung aktiviert haben, wird ein Prozessalarm ausgelöst.

3.20.3 Diagnose und Alarm

Auslöser	Prozessalarm	Diagnosealarm	parametrierbar
Projektierungs-/ Parametrierungsfehler	-	X	-
Messbereichsüberschreitung	-	X	-
Messbereichsunterschreitung	-	X	-
Grenzwertüberschreitung	X	-	X
Grenzwertunterschreitung	X	-	Χ
Diagnosepufferüberlauf	-	X	-
Kommunikationsfehler	-	X	-
Prozessalarm verloren	-	X	-

Prozessalarmdaten

Damit Sie auf asynchrone Ereignisse reagieren können, haben Sie die Möglichkeit Prozessalarme zu aktivieren. Ein Prozessalarm unterbricht den linearen Programmablauf und verzweigt je nach Master-System in eine bestimmte Interrupt-Routine. Hier können Sie entsprechend auf den Prozessalarm reagieren.

Bei CANopen werden die Prozessalarmdaten über ein Emergency-Telegramm übertragen.

Bei Zugriff über CPU, PROFIBUS und PROFINET erfolgt die Übertragung der Prozessalarmdaten mittels Diagnosetelegramm.

SX - Subindex für Zugriff über EtherCAT mit Index 5000h

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	SX	
PRIT_OL	1	Oberer Grenzwert Kanal x überschritten	00h	02h	
PRIT_UL	1	Unterer Grenzwert Kanal x überschritten	00h	03h	
PRIT_US	2	μs-Ticker	00h	04h (High-Byte)	
				05h (Low-Byte)	

PRIT_OL Grenzwertüberschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberschreitung Kanal 0 Bit 1: Grenzwertüberschreitung Kanal 1 Bit 2: Grenzwertüberschreitung Kanal 2 Bit 3: Grenzwertüberschreitung Kanal 3 Bit 7 4: reserviert

031-1CD30 - AI 4x16Bit 0...10V > Diagnose und Alarm

PRIT_UL Grenzwertunterschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertunterschreitung Kanal 0 Bit 1: Grenzwertunterschreitung Kanal 1 Bit 2: Grenzwertunterschreitung Kanal 2 Bit 3: Grenzwertunterschreitung Kanal 3 Bit 7 4: reserviert

PRIT_US µs-Ticker

Byte	Bit 7 0
0 1	Wert des µs-Ticker bei Auftreten des Prozessalarms

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} -1 μ s wieder bei 0 beginnt. PRIT_US repräsentiert die unteren 2 Byte des μ s-Ticker-Werts (0 ... 2^{16} -1).

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose kommend bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm gehend. Wurde für einen Kanal ein Diagnosealarm kommend wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm gehend verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm kommend bis letzter Diagnosealarm gehend) leuchtet die MF-LED des Moduls.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- Prozessalarm verloren
- Versorgungsspannung fehlt
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h

031-1CD30 - AI 4x16Bit 0...10V > Diagnose und Alarm

Name	Bytes	Funktion	Default	DS	IX	SX
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERRCH 7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 5: reserviert Bit 6: gesetzt bei Prozessalarm verloren Bit 7: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 ■ Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler ■ Bit 7: reserviert

031-1CD30 - AI 4x16Bit 0...10V > Diagnose und Alarm

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0		
0	Kanalspezifische Fehler: Kanal x:		
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 4 1: reserviert Bit 5: gesetzt bei Prozessalarm verloren Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung 		

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

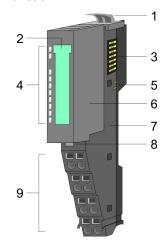
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

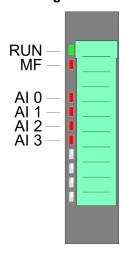
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1CD35 - AI 4x16Bit 0...10V


3.21 031-1CD35 - AI 4x16Bit 0...10V

Eigenschaften

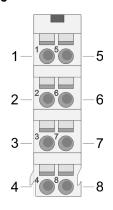
Das Elektronikmodul besitzt 4 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

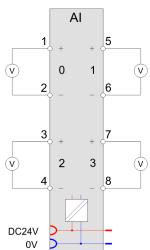

- 4 analoge Eingänge
- Geeignet für Geber mit 0 ... 10V
- Diagnosefunktion
- Parametrierbare Störfrequenzunterdrückung (50/60Hz)
- 16Bit Auflösung
- *Kap. 3.20 "031-1CD30 AI 4x16Bit 0...10V" Seite 225* mit erweitertem Parametersatz

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x rot	Beschreibung
•		x	Bus-Kommunikation ist OK Modul-Status ist OK
•	•	x	Bus-Kommunikation ist OK Modul-Status meldet Fehler
	•	x	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler <i>∜ Kap.</i> 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
		•	Fehler Kanal x ■ Signal liegt außerhalb des Messbereichs ■ Fehler in der Parametrierung
nicht relevai	nt: X		

031-1CD35 - AI 4x16Bit 0...10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	+AI 2	E	+ Kanal 2
4	-AI 2	E	Masse Kanal 2
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	+AI 3	E	+ Kanal 3
8	-AI 3	Е	Masse Kanal 3

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	AI 3	2	Analogwert Kanal 3	6401h/s+3	04h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

031-1CD35 - AI 4x16Bit 0...10V > Technische Daten

3.21.1 Technische Daten

Artikelnr.	031-1CD35
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0413 15C4
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	65 mA
Verlustleistung	0,9 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	25 mA
Spannungseingänge	✓
min. Eingangswiderstand im Spannungsbereich	200 kΩ
Eingangsspannungsbereiche	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,2%
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	+/-0,1%
Grundfehlergrenze Spannungsbereiche mit SFU	
Zerstörgrenze Spannung	max. 30V
Stromeingänge	-
max. Eingangswiderstand im Strombereich	
Eingangsstrombereiche	2
Gebrauchsfehlergrenze Strombereiche	±
Gebrauchsfehlergrenze Strombereiche mit SFU	
	-
Grundfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU	-
•	- - -
Grundfehlergrenze Strombereiche mit SFU	- - -
Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung)	
Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom)	
Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge	
Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche	
Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche	
Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	
Grundfehlergrenze Strombereiche mit SFU Zerstörgrenze Stromeingänge (Spannung) Zerstörgrenze Stromeingänge (Strom) Widerstandseingänge Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche Gebrauchsfehlergrenze Widerstandsbereiche mit SFU Grundfehlergrenze Widerstandsbereiche	-

031-1CD35 - AI 4x16Bit 0...10V > Technische Daten

Artikelnr.	031-1CD35
Widerstandsthermometerbereiche	
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	16
Messprinzip	sukzessive Approximation
Grundwandlungszeit	480 μs alle Kanäle
Störspannungsunterdrückung für Frequenz	>80dB bei 50Hz (UCM<9V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-

031-1CD35 - AI 4x16Bit 0...10V > Technische Daten

zwischen Kanälen und Rückwandbus zwischen Kanälen und Spannungsversorgung max. Potenzialdifferenz zwischen Eingängen (Ucm) max. Potenzialdifferenz zwischen Bingängen (Ucm) max. Potenzialdifferenz zwischen Bingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) - Cotenzialdifferenz zwischen Eingängen und Mintern	Artikelnr.	031-1CD35
max. Potenzialdifferenz zwischen Stromkreisen max. Potenzialdifferenz zwischen Eingängen (Ucm) max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen max. Potenzialdifferenz zwischen Mintern und Ausgängen - Location of Strate (Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen - Location of Strate (Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen - Location of Strate (Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen - Location of Strate (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Mintern und Masgängen - Location of Strate (Uiso) - Locati	zwischen Kanälen und Rückwandbus	✓
max. Potenzialdifferenz zwischen Eingängen (Ucm) max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen lsolierung geprüft mit DC 500 V Technische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung ((vp) Ausgangsspannung ((vp) Ausgangsspannung (Nennwert) Kurzschlussschutz Potenzialbindung	zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen Isolierung geprüft mit Technische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung (typ) - Ausgangsspannung (typ) - Ausgangsspannung (Nennwert) - Kurzschlussschutz - Potenzialbindung - Datengrößen Eingangsbytes Ausgangsbytes Ausgangsbytes 0 Parameterbytes Diagnosebytes 9 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht Inklusive Zubehör 61 g Gewicht Brutto Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur 2-25 °C bis 70 °C Zertiffzierungen Zertiffzierung nach UL	max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm) max. Potenzialdifferenz zwischen Eingängen und Mintern (Usio) max. Potenzialdifferenz zwischen Mintern und Ausgängen Isolierung geprüft mit Technische Daten Geberversorgung Anzahl Ausgänge - Ausgangsspannung (typ) - Ausgangsspannung (Nennwert) Kurzschlussschutz - Potenzialbindung - Datengrößen Eingangsbytes 8 Ausgangsbytes 0 Parameterbytes 9 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Inklusive Zubehör 61 g Gewicht Inklusive Zubehör 61 g Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur Zertifizierungen Zertifizierung nach UL	max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 9 V
(Ucm) max. Potenzialdifferenz zwischen Eingängen und Mintern (Idiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen Isolierung geprüft mit DC 500 V Technische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung (typ) Ausgangsspannung (Nennwert) Kurzschlussschutz Potenzialbindung	max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
(Uiso) max. Potenzialdifferenz zwischen Mintern und Ausgängen Isolierung geprüft mit DC 500 V Technische Daten Geberversorgung Anzahl Ausgänge Ausgangspannung (typ)		-
Isolierung geprüft mit Technische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung (typ) Ausgangsspannung (Nennwert) Kurzschlussschutz Potenzialbindung Datengrößen Eingangsbytes Ausgangsbytes O Parameterbytes Diagnosebytes Material Befestigung Mechanische Daten Abmessungen (BxHxT) Gewicht Netto Gewicht Brutto Umgebungsbedingungen Betriebstemperatur Lagertemperatur Lagertemperatur Zertifizierungen Zertifizierung nach UL.		DC 75 V/ AC 50 V
Technische Daten Geberversorgung Anzahl Ausgänge Ausgangsspannung (typ) Ausgangsspannung (Nennwert) Furzschlussschutz Potenzialbindung	max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Anzahl Ausgänge Ausgangsspannung (typ) - Ausgangsspannung (Nennwert) - Kurzschlussschutz - Potenzialbindung - Datengrößen Eingangsbytes 8 Ausgangsbytes 0 Parameterbytes 9 Diagnosebytes 20 Gehäuse Material Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht Brutto T5 g Umgebungsbedlingungen Betriebstemperatur Lagertemperatur - 25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL	Isolierung geprüft mit	DC 500 V
Ausgangsspannung (typ) Ausgangsspannung (Nennwert) CKUTZSChlussSchutZ Potenzialbindung - Datengrößen Eingangsbytes 8 Ausgangsbytes 0 Parameterbytes 9 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht Inklusive Zubehör 61 g Gewicht Bruto Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur Zertifizierungen Zertifizierung nach UL	Technische Daten Geberversorgung	
Ausgangsspannung (Nennwert) Kurzschlussschutz Potenzialbindung Datengrößen Eingangsbytes 8 Ausgangsbytes 0 Parameterbytes 9 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht Brutto To g Umgebungsbedingungen Betriebstemperatur Lagertemperatur 2ertifizierungen Zertifizierung nach UL ja	Anzahl Ausgänge	-
Kurzschlussschutz Potenzialbindung	Ausgangsspannung (typ)	-
Potenzialbindung Datengrößen Eingangsbytes 8 Ausgangsbytes 0 Parameterbytes 9 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht inklusive Zubehör 61 g Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur Zertifizierungen Zertifizierung nach UL ja	Ausgangsspannung (Nennwert)	-
Datengrößen Eingangsbytes 8 Ausgangsbytes 0 Parameterbytes 9 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht inklusive Zubehör 61 g Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Kurzschlussschutz	-
Eingangsbytes Ausgangsbytes 0 Parameterbytes 9 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht inklusive Zubehör Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur Zertifizierungen Zertifizierung nach UL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Potenzialbindung	-
Ausgangsbytes Parameterbytes 9 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht inklusive Zubehör 61 g Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur Zertifizierungen Zertifizierung nach UL 9	Datengrößen	
Parameterbytes 9 Diagnosebytes 20 Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht inklusive Zubehör 61 g Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Eingangsbytes	8
Diagnosebytes Gehäuse Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht inklusive Zubehör 61 g Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Ausgangsbytes	0
GehäusePPE / PPE GF10BefestigungProfilschiene 35mmMechanische Daten12,9 mm x 109 mm x 76,5 mmAbmessungen (BxHxT)12,9 mm x 109 mm x 76,5 mmGewicht Netto61 gGewicht inklusive Zubehör61 gGewicht Brutto75 gUmgebungsbedingungenUmgebungsbedingungenBetriebstemperatur0 °C bis 60 °CLagertemperatur-25 °C bis 70 °CZertifizierungenja	Parameterbytes	9
Material PPE / PPE GF10 Befestigung Profilschiene 35mm Mechanische Daten Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm Gewicht Netto 61 g Gewicht inklusive Zubehör 61 g Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Diagnosebytes	20
Befestigung Mechanische Daten Abmessungen (BxHxT) Gewicht Netto Gewicht inklusive Zubehör Gewicht Brutto Umgebungsbedingungen Betriebstemperatur D °C bis 60 °C Lagertemperatur Zertifizierungen Zertifizierung nach UL	Gehäuse	
Mechanische Daten Abmessungen (BxHxT)	Material	PPE / PPE GF10
Abmessungen (BxHxT) 12,9 mm x 109 mm x 76,5 mm 61 g Gewicht Netto 61 g Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Befestigung	Profilschiene 35mm
Gewicht Netto Gewicht inklusive Zubehör Gewicht Brutto To g Umgebungsbedingungen Betriebstemperatur D °C bis 60 °C Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Mechanische Daten	
Gewicht inklusive Zubehör Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Brutto 75 g Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Gewicht Netto	61 g
Umgebungsbedingungen Betriebstemperatur 0 °C bis 60 °C Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Gewicht inklusive Zubehör	61 g
Betriebstemperatur 0 °C bis 60 °C Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Gewicht Brutto	75 g
Lagertemperatur -25 °C bis 70 °C Zertifizierungen Zertifizierung nach UL ja	Umgebungsbedingungen	
Zertifizierungen Zertifizierung nach UL ja	Betriebstemperatur	0 °C bis 60 °C
Zertifizierung nach UL ja	Lagertemperatur	-25 °C bis 70 °C
	Zertifizierungen	
Zertifizierung nach KC ja	Zertifizierung nach UL	ja
	Zertifizierung nach KC	ja

031-1CD35 - AI 4x16Bit 0...10V > Parametrierdaten

3.21.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
SUPR	1	Störfrequenzunterdrückung	00h	01h	3100h	01h
CH0FN	1	Funktionsnummer Kanal 0	10h	80h	3101h	02h
CH1FN	1	Funktionsnummer Kanal 1	10h	81h	3102h	03h
CH2FN	1	Funktionsnummer Kanal 2	10h	82h	3103h	04h
CH3FN	1	Funktionsnummer Kanal 3	10h	83h	3104h	05h

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 1, 0: Störfrequenzunterdrückung Kanal 0 Bit 3, 2: Störfrequenzunterdrückung Kanal 1 Bit 5, 4: Störfrequenzunterdrückung Kanal 2 Bit 7, 6: Störfrequenzunterdrückung Kanal 3 00: deaktiviert 01: 60Hz 10: 50Hz z.B.: 10101010: alle Kanäle Störfrequenzunterdrückung 50Hz

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

031-1CD35 - Al 4x16Bit 0...10V > Diagnosedaten

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(10h)	5V	13824	3600h		10
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-1,76V	-4864	ED00h	Untersteuerung	27046
0 10V	12,5V	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{U}{10}$
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 10384 \cdot \frac{10}{10}$
(20h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$
	-2V	-3277	F333h	Untersteuerung	16384

3.21.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- Versorgungsspannung fehlt
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h

031-1CD35 - AI 4x16Bit 0...10V > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse – 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

031-1CD35 - AI 4x16Bit 0...10V > Diagnosedaten

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 5 1: reserviert Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

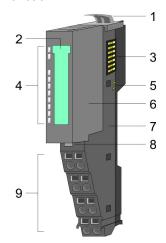
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

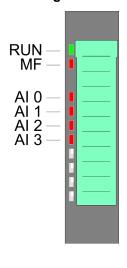
Im SLIO-Modul befindet sich ein 32-Bit Timer (µs-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1µs wieder bei 0 beginnt.

031-1CD40 - AI 4x16Bit 0(4)...20mA


3.22 031-1CD40 - AI 4x16Bit 0(4)...20mA

Eigenschaften

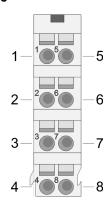
Das Elektronikmodul besitzt 4 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

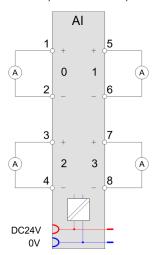

- 4 analoge Eingänge
- Geeignet für Geber mit 0 ... 20mA;
 - 4 ... 20mA mit externer Versorgung
- Alarm- und Diagnosefunktion
- Parametrierbare Störfrequenzunterdrückung (50/60Hz)
- 16Bit Auflösung
- ∜ Kap. 3.23 "031-1CD45 AI 4x16Bit 0(4)...20mA" Seite 258 mit eingeschränktem Parametersatz

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x ■ rot	Beschreibung
		X	Bus-Kommunikation ist OK
		^	Modul-Status ist OK
_		X	Bus-Kommunikation ist OK
		^	Modul-Status meldet Fehler
		V	Bus-Kommunikation nicht möglich
		X	Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler & Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			Signal liegt außerhalb des MessbereichsFehler in der Parametrierung
nicht relevan	t: X		

031-1CD40 - AI 4x16Bit 0(4)...20mA

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	+AI 2	E	+ Kanal 2
4	-AI 2	E	Masse Kanal 2
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	+AI 3	E	+ Kanal 3
8	-AI 3	E	Masse Kanal 3

E: Eingang

Bei Einsatz von 2-Draht-Messumformern ist in die Messleitung eine externe Spannungsversorgung einzuschleifen.

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

031-1CD40 - AI 4x16Bit 0(4)...20mA > Technische Daten

Adr.	Name	Bytes	Funktion	IX	SX
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	AI 3	2	Analogwert Kanal 3	6401h/s+3	04h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.22.1 Technische Daten

Artikelnr.	031-1CD40
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0412 1544
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	65 mA
Verlustleistung	0,8 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Spannungseingänge	-
min. Eingangswiderstand im Spannungsbereich	-
Eingangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	-
Stromeingänge	✓
max. Eingangswiderstand im Strombereich	60 Ω
Eingangsstrombereiche	0 mA +20 mA
	+4 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-0,2%
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	+/-0,1%
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	max. 24V
Zerstörgrenze Stromeingänge (Strom)	max. 40mA

031-1CD40 - AI 4x16Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1CD40
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	16
Messprinzip	sukzessive Approximation
Grundwandlungszeit	480 μs alle Kanäle
Störspannungsunterdrückung für Frequenz	>80dB (UCM<4V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja, parametrierbar
Prozessalarm	ja, parametrierbar
Diagnosealarm	ja, parametrierbar

031-1CD40 - AI 4x16Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1CD40
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 4 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	8
Ausgangsbytes	0
Parameterbytes	32
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	60 g
Gewicht inklusive Zubehör	60 g
Gewicht Brutto	74 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	

031-1CD40 - AI 4x16Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1CD40
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1CD40 - AI 4x16Bit 0(4)...20mA > Parametrierdaten

3.22.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose*	00h	00h	3100h	01h
RES1	1	reserviert*	00h	00h	3101h	02h
LIMIT_EN	1	Grenzwertüberwachung*	00h	00h	3102h	03h
SUPR	1	Störfrequenzunterdrückung (SFU)	00h	01h	3103h	04h
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3104h	05h
RES7	1	reserviert	00h	80h	3105h	06h
CH0UL	2	Oberer Grenzwert Kanal 0	7FFFh	80h	3106h31 07h	07h
CH0LL	2	Unterer Grenzwert Kanal 0	8000h	80h	3108h31 09h	08h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	310Ah	09h
RES13	1	reserviert	00h	81h	310Bh	0Ah
CH1UL	2	Oberer Grenzwert Kanal 1	7FFFh	81h	310Ch31 0Dh	0Bh
CH1LL	2	Unterer Grenzwert Kanal 1	8000h	81h	310Eh31 0Fh	0Ch
CH2FN	1	Funktionsnummer Kanal 2	31h	82h	3110h	0Dh
RES19	1	reserviert	00h	82h	3111h	0Eh
CH2UL	2	Oberer Grenzwert Kanal 2	7FFFh	82h	3112h31 13h	0Fh
CH2LL	2	Unterer Grenzwert Kanal 2	8000h	82h	3114h31 15h	10h
CH3FN	1	Funktionsnummer Kanal 3	31h	83h	3116h	11h
RES25	1	reserviert	00h	83h	3117h	12h
CH3UL	2	Oberer Grenzwert Kanal 3	7FFFh	83h	3118h31 19h	13h
CH3LL	2	Unterer Grenzwert Kanal 3	8000h	83h	311Ah31 1Bh	14h
* Diesen Datensatz d	ürfen Sie aussch	ıließlich im STOP-Zustand übertragen.				

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm00h: sperren40h: freigeben

031-1CD40 - AI 4x16Bit 0(4)...20mA > Parametrierdaten

■ Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

LIMIT_EN Grenzwertüberwachung

Byte	Bit 7 0		
0	 Bit 0: Grenzwertüberwachung Kanal 0 (1: an) Bit 1: Grenzwertüberwachung Kanal 1 (1: an) Bit 2: Grenzwertüberwachung Kanal 2 (1: an) Bit 3: Grenzwertüberwachung Kanal 3 (1: an) Bit 7 4: reserviert 		

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 1, 0: Störfrequenzunterdrückung Kanal 0 Bit 3, 2: Störfrequenzunterdrückung Kanal 1 Bit 5, 4: Störfrequenzunterdrückung Kanal 2 Bit 7, 6: Störfrequenzunterdrückung Kanal 3 - 00: deaktiviert - 01: 60Hz - 10: 50Hz
	z.B.: 10101010: alle Kanäle Störfrequenzunterdrückung 50Hz

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

031-1CD40 - AI 4x16Bit 0(4)...20mA > Parametrierdaten

0(4) ... 20mA

Messbereich	Strom	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(I)	(D)				
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	D 27649 I	
Siemens	20mA	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{I}{20}$	
S7-Format	10mA	13824	3600h			
(31h)	0mA	0	0000h		$I = D \cdot \frac{20}{27648}$	
	-3,52mA	-4864	ED00h	Untersteuerung	27648	
0 20mA	25,00mA	20480	5000h	Übersteuerung	D 16304 I	
Siemens	20mA	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{1}{20}$	
S5-Format	10mA	8192	2000h			
(41h)	0mA	0	0000h		$I = D \cdot \frac{20}{16384}$	
	-4,00mA	-3277	F333h	Untersteuerung	16384	
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{I-4}{16}$	
Siemens	20mA	27648	6C00h	Nennbereich	16	
S7-Format	12mA	13824	3600h		$I = D \cdot \frac{16}{27648} + 4$	
(30h)	4mA	0	0000h		$T = D \cdot \frac{1}{27648} + 4$	
	1,19mA	-4864	ED00h	Untersteuerung		
4 20mA	24,00mA	20480	5000h	Übersteuerung	$D = 16384 \cdot \frac{I-4}{16}$	
Siemens S5-Format	20mA	16384	4000h	Nennbereich	$D = 10384 \cdot \frac{16}{16}$	
	12mA	8192	2000h		16	
(40h)	4mA	0	0000h		$I = D \cdot \frac{16}{16384} + 4$	
	0,8mA	-3277	F333h	Untersteuerung		

CHxUL CHxLL Oberer Grenzwert Unterer Grenzwert Kanal x Sie können für jeden Kanal einen *Oberen* bzw. *Unteren* Grenzwert definieren. Hierbei können Sie ausschließlich Werte aus dem Nennbereich vorgeben, ansonsten erhalten Sie einen Parametrierfehler. Durch Angabe von 7FFFh für den oberen bzw. 8000h für den unteren Grenzwert wird der entsprechende Grenzwert deaktiviert. Sobald sich Ihr Messwert außerhalb eines Grenzwerts befindet und Sie die Grenzwertüberwachung aktiviert haben, wird ein Prozessalarm ausgelöst.

031-1CD40 - AI 4x16Bit 0(4)...20mA > Diagnose und Alarm

3.22.3 Diagnose und Alarm

Auslöser	Prozessalarm	Diagnosealarm	parametrierbar
Projektierungs-/ Parametrierungsfehler	-	X	-
Messbereichsüberschreitung	-	X	-
Messbereichsunterschreitung	-	X	-
Grenzwertüberschreitung	X	-	X
Grenzwertunterschreitung	X	-	X
Diagnosepufferüberlauf	-	X	-
Kommunikationsfehler	-	X	-
Prozessalarm verloren	-	X	-

Prozessalarmdaten

Damit Sie auf asynchrone Ereignisse reagieren können, haben Sie die Möglichkeit Prozessalarme zu aktivieren. Ein Prozessalarm unterbricht den linearen Programmablauf und verzweigt je nach Master-System in eine bestimmte Interrupt-Routine. Hier können Sie entsprechend auf den Prozessalarm reagieren.

Bei CANopen werden die Prozessalarmdaten über ein Emergency-Telegramm übertragen.

Bei Zugriff über CPU, PROFIBUS und PROFINET erfolgt die Übertragung der Prozessalarmdaten mittels Diagnosetelegramm.

SX - Subindex für Zugriff über EtherCAT mit Index 5000h

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	SX
PRIT_OL	1	Oberer Grenzwert Kanal x überschritten	00h	02h
PRIT_UL	1	Unterer Grenzwert Kanal x überschritten	00h	03h
PRIT_US	2	μs-Ticker	00h	04h (High-Byte) 05h (Low-Byte)

PRIT_OL Grenzwertüberschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberschreitung Kanal 0 Bit 1: Grenzwertüberschreitung Kanal 1 Bit 2: Grenzwertüberschreitung Kanal 2 Bit 3: Grenzwertüberschreitung Kanal 3 Bit 7 4: reserviert

PRIT_UL Grenzwertunterschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertunterschreitung Kanal 0 Bit 1: Grenzwertunterschreitung Kanal 1 Bit 2: Grenzwertunterschreitung Kanal 2 Bit 3: Grenzwertunterschreitung Kanal 3 Bit 7 4: reserviert

031-1CD40 - AI 4x16Bit 0(4)...20mA > Diagnose und Alarm

PRIT_US µs-Ticker

Byte	Bit 7 0
0 1	Wert des µs-Ticker bei Auftreten des Prozessalarms

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} -1 μ s wieder bei 0 beginnt. PRIT_US repräsentiert die unteren 2 Byte des μ s-Ticker-Werts (0 ... 2^{16} -1).

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose kommend bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm gehend. Wurde für einen Kanal ein Diagnosealarm kommend wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm gehend verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm kommend bis letzter Diagnosealarm gehend) leuchtet die MF-LED des Moduls.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- Prozessalarm verloren
- Versorgungsspannung fehlt
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh

031-1CD40 - AI 4x16Bit 0(4)...20mA > Diagnose und Alarm

Name	Bytes	Funktion	Default	DS	IX	SX
CH4ERRCH 7ERR	6	reserviert	00h			0Eh 11h
DIAG_US	4	µs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	■ Bit 3 0: Modulklasse
	- 0101b Analogbaugruppe
	Bit 4: Kanalinformation vorhanden
	Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 5: reserviert Bit 6: gesetzt bei Prozessalarm verloren Bit 7: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	■ Bit 6 0: Kanaltyp - 70h: Digitaleingabe - 71h: Analogeingabe - 72h: Digitalausgabe - 73h: Analogausgabe - 74h: Analogeingabe/-ausgabe - 76h: Zähler
	■ Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

031-1CD40 - AI 4x16Bit 0(4)...20mA > Diagnose und Alarm

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0				
0	Kanalspezifische Fehler: Kanal x:				
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 4 1: reserviert Bit 5: gesetzt bei Prozessalarm verloren Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung 				

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

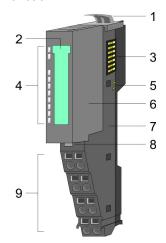
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

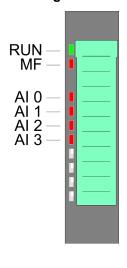
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1 μ s wieder bei 0 beginnt.

031-1CD45 - AI 4x16Bit 0(4)...20mA


3.23 031-1CD45 - AI 4x16Bit 0(4)...20mA

Eigenschaften

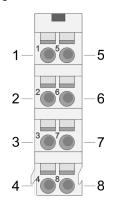
Das Elektronikmodul besitzt 4 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

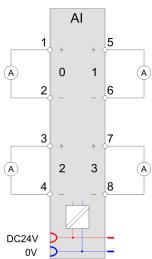

- 4 analoge Eingänge
- Geeignet für Geber mit 0 ... 20mA;4 ... 20mA mit externer Versorgung
- Diagnosefunktion
- Parametrierbare Störfrequenzunterdrückung (50/60Hz)
- 16Bit Auflösung
- Kap. 3.22 "031-1CD40 AI 4x16Bit 0(4)...20mA" Seite 245 mit erweitertem Parametersatz

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 3 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x	Beschreibung
		Χ	Bus-Kommunikation ist OK
		Λ	Modul-Status ist OK
		V	Bus-Kommunikation ist OK
		X	Modul-Status meldet Fehler
		V	Bus-Kommunikation nicht möglich
		X	Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler <i>∜</i> Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			Signal liegt außerhalb des MessbereichsFehler in der Parametrierung
nicht relevant: X			

031-1CD45 - AI 4x16Bit 0(4)...20mA

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	+AI 2		+ Kanal 2
4	-AI 2		Masse Kanal 2
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	+AI 3		+ Kanal 3
8	-AI 3		Masse Kanal 3

E: Eingang

Bei Einsatz von 2-Draht-Messumformern ist in die Messleitung eine externe Spannungsversorgung einzuschleifen.

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

031-1CD45 - AI 4x16Bit 0(4)...20mA > Technische Daten

Adr.	Name	Bytes	Funktion	IX	SX
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	AI 3	2	Analogwert Kanal 3	6401h/s+3	04h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.23.1 Technische Daten

Artikelnr.	031-1CD45
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0414 15C4
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	65 mA
Verlustleistung	0,8 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Spannungseingänge	-
min. Eingangswiderstand im Spannungsbereich	-
Eingangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	-
Stromeingänge	✓
max. Eingangswiderstand im Strombereich	60 Ω
Eingangsstrombereiche	0 mA +20 mA
	+4 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-0,2%
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	+/-0,1%
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	max. 24V
Zerstörgrenze Stromeingänge (Strom)	max. 40mA

031-1CD45 - AI 4x16Bit 0(4)...20mA > Technische Daten

Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche - Gebrauchsfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU - Zerstörgrenze Widerstandsbereiche mit SFU - Zerstörgrenze Widerstandsbereiche mit SFU - Widerstandsthermometereingänge - Widerstandsthermometerbereiche - Gebrauchsfehlergrenze Widerstandsthermometerbereiche - Gebrauchsfehlergrenze Widerstandsthermometerbereiche - Gebrauchsfehlergrenze Widerstandsthermometerbereiche - Grundfehlergrenze Widerstandsthermometerbereiche - Grundfehlergrenze Widerstandsthermometerbereiche mit SFU - Grundfehlergrenze Widerstandsthermometereingänge - Thermoelementleingange - Thermoelementleingange - Gebrauchsfehlergrenze Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Zerstörgrenze Thermoelementbereiche mit SFU -	Artikelnr.	031-1CD45
Gebrauchsfehlergrenze Widerstandsbereiche - Grundfehlergrenze Widerstandsbereiche mit SFU - Grundfehlergrenze Widerstandsbereiche mit SFU - Zerstörgrenze Widerstandsbereiche mit SFU - Widerstandsthermometereingänge - Widerstandsthermometerbereiche - Gebrauchsfehlergrenze Widerstandsthermometerbereiche - Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU - Grundfehlergrenze Widerstandsthermometerbereiche mit SFU - Gerstauchsfehlergrenze Thermoelementbereiche mit SFU - Gebrauchsfehlergrenze Thermoelementbereiche mit SFU - Gebrauchsfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Zerstörgrenze Thermoelementeingänge - Temperaturkompensation parametrierbar - Temperaturfehler der internen Kompensation -	Widerstandseingänge	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU = Grundfehlergrenze Widerstandsbereiche mit SFU = Cerstörgrenze Widerstandsthermometerbereiche = Cebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU = Cerstörgrenze Widerstandsthermometerbereiche = Cerständstententeingänge = Cerständstenteingänge = Cerständstenteingänge = Cerständstehlergrenze Thermoelementbereiche = Cerständsfehlergrenze Thermoelementbereiche mit SFU = Cerstörgenze Thermoelementbereiche mit SFU = Cerstörgenze Thermoelementbereiche mit SFU = Cerstörgenze Thermoelementeingänge = Cerständstundsprenzeitnerbar = Cerständstundsprenzeitnerbar = Cerständstundsprenzeitnerbar = Cerständstundsprenzeitnerbar = Cerständstundsprenzeitnerbar = Cerständstundsprenzeitner Mompensation intern = Cerständstundsprenzeitner Mompensation intern = Cerständstundstundstundstundstund States = Cerständstundstundstandstundstundstundstand = Cerständstundstandstandstandstundstandstandstandstandstandstandstandsta	Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche Grundfehlergrenze Widerstandsbereiche mit SFU Zerstorgrenze Widerstandsthermometerberichange Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometereingänge Thermoelementeingänge Thermoelementeingänge Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Grundfehlergenze Thermoelementbereiche mit SFU Termograturkompensation parametrierbar Temperaturkompensation parametrierbar Temperaturkompensation intern Temperaturkompensation intern Temperaturdeller der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip Grundwandlungszeit Storspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Status, Alarm, Diagnosen Status, Alarm, Diagnosen Freczessalarm	Gebrauchsfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU - Zerstörgrenze Widerstandseingänge - Widerstandsthermometerbereiche - Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU - Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU - Grundfehlergrenze Widerstandsthermometerbereiche mit SFU - Grundfehlergrenze Widerstandsthermometerbereiche mit SFU - Zerstörgrenze Widerstandsthermometerbereiche mit SFU - Zerstörgrenze Widerstandsthermometerbereiche mit SFU - Zerstörgrenze Widerstandsthermometereingänge - Thermoelementeingänge - Thermoelementeingänge - Gebrauchsfehlergrenze Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Ternberaturkompensation parametrierbar - Temperaturkompensation parametrierbar - Temperaturkompensation intern - Temperaturfehler der internen Kompensation - Technische Einheit der Temperaturmesung	Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge Widerstandsthermometereingänge Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche it SFU Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche Grundfehlergrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation intern Gerneperaturkompensation intern Gerneperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit 6 Messprinzip Grundwandlungszeit 480 µs alle Kanāle Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Status, Alarm, Diagnosen Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm	Grundfehlergrenze Widerstandsbereiche	-
Widerstandsthermometereingange Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche it SFU Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometerbereiche — Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche — Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementbereiche nit SFU Zerstörgrenze Thermoelementbereiche nit SFU Zerstörgrenze Thermoelementbereiche nit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation intern Temperaturkompensation intern Temperaturfehler der internen Kompensation Zechnische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip Sukzessive Approximation Grundwandlungszeit 480 µs alle Kanāle Störspannungsunterdrückung für Frequenz Sadds (UCM<4V) Status, Alarm, Diagnosen Status Alarm, Diagnosen Status Alarme nein	Grundfehlergrenze Widerstandsbereiche mit SFU	-
Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstorgrenze Widerstandsthermometerbereiche mit SFU Zerstorgrenze Widerstandsthermometerbereiche mit SFU Zerstorgrenze Widerstandsthermometereingänge Thermoelementeingänge Thermoelementereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche int SFU Grundfehlergrenze Thermoelementbereiche int SFU Grundfehlergrenze Thermoelementbereiche int SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementbereiche int SFU Zerstörgrenze Thermoelementbereiche int SFU Zerstörgrenze Thermoelementerienbar Temperaturkompensation extern Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip sukzessive Approximation Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB (UCM<4V) Status, Alarm, Diagnosen Status, Alarm, Diagnosen Status, Alarm, Diagnosen Status, Alarme nein	Zerstörgrenze Widerstandseingänge	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometereingänge Thermoelementeingänge Thermoelementeingänge Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche in SFU Grundfehlergrenze Thermoelementbereiche in SFU Grundfehlergrenze Thermoelementbereiche in SFU Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementerienber in	Widerstandsthermometereingänge	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometereingänge Thermoelementeingänge Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche int SFU Grundfehlergrenze Thermoelementbereiche int SFU Grundfehlergrenze Thermoelementbereiche int SFU Grundfehlergrenze Thermoelementbereiche int SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation parametrierbar Temperaturkompensation intern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip sukzessive Approximation Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz Sadd (UCM<4V) Status, Alarm, Diagnosen Status, Alarm, Diagnosen Status, Alarme nein	Widerstandsthermometerbereiche	-
mit SFU Grundfehlergrenze Widerstandsthermometerbereiche Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometereingänge - Thermoelementeingänge - Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche - Grundfehlergrenze Thermoelementbereiche int SFU - Grundfehlergrenze Thermoelementbereiche - Grundfehlergrenze Thermoelementbereiche - Grundfehlergrenze Thermoelementbereiche int SFU - Zerstörgrenze Thermoelementbereiche mit SFU - Zerstörgrenze Thermoelementeingänge - Temperaturkompensation parametrierbar - Temperaturkompensation parametrierbar - Temperaturkompensation intern - Temperaturkompensation intern - Temperaturfehler der internen Kompensation - Technische Einheit der Temperaturmessung - Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB (UCM<4V) Status, Alarm, Diagnosen Status, Alarm, Diagnosen Status, Alarm, Diagnosen Prozessalarm nein	Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU Zerstörgrenze Widerstandsthermometereingänge Thermoelementeingänge Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gerundfehlergrenze Thermoelementbereiche inti SFU Grundfehlergrenze Thermoelementbereiche inti SFU Grundfehlergrenze Thermoelementbereiche inti SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip Grundwandlungszeit Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm		-
SFU Zerstörgrenze Widerstandsthermometereingänge - Thermoelementeingänge - Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche - Gebrauchsfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Grundfehlergrenze Thermoelementbereiche mit SFU - Zerstörgrenze Thermoelementeingänge - Temperaturkompensation parametrierbar - Temperaturkompensation extern - Temperaturkompensation intern - Technische Einheit der Temperaturmessung - Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB (UCM<4V)	Grundfehlergrenze Widerstandsthermometerbereiche	-
Thermoelementeingänge Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche in SFU Grundfehlergrenze Thermoelementbereiche in SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip Sukzessive Approximation Grundwandlungszeit Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm		-
Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche init SFU Grundfehlergrenze Thermoelementbereiche - Grundfehlergrenze Thermoelementbereiche init SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge - Temperaturkompensation parametrierbar - Temperaturkompensation extern - Temperaturkompensation intern - Temperaturfehler der internen Kompensation - Technische Einheit der Temperaturmessung - Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB (UCM<4V) Status, Alarm, Diagnosen Statusanzeige ja Alarme nein	Zerstörgrenze Widerstandsthermometereingänge	-
Gebrauchsfehlergrenze Thermoelementbereiche Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche Grundfehlergrenze Thermoelementbereiche Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm	Thermoelementeingänge	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU Grundfehlergrenze Thermoelementbereiche Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip Sukzessive Approximation Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm nein	Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm	Gebrauchsfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip Grundwandlungszeit Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm	Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge Temperaturkompensation parametrierbar Temperaturkompensation extern Temperaturkompensation intern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm Prozessalarm	Grundfehlergrenze Thermoelementbereiche	-
Temperaturkompensation parametrierbar - Cemperaturkompensation extern - Cemperaturkompensation intern - Cemperaturfehler der internen Kompensation - Cethnische Einheit der Temperaturmessung - Cethn	Grundfehlergrenze Thermoelementbereiche mit SFU	-
Temperaturkompensation extern Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit 16 Messprinzip sukzessive Approximation Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm	Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation intern Temperaturfehler der internen Kompensation Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm	Temperaturkompensation parametrierbar	-
Temperaturfehler der internen Kompensation - Cechnische Einheit der Temperaturmessung in Bit	Temperaturkompensation extern	-
Technische Einheit der Temperaturmessung Auflösung in Bit Messprinzip Sukzessive Approximation Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB (UCM<4V) Status, Alarm, Diagnosen Statusanzeige Alarme prozessalarm prozessalarm	Temperaturkompensation intern	-
Auflösung in Bit Messprinzip Grundwandlungszeit Störspannungsunterdrückung für Frequenz Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm 16 sukzessive Approximation 480 µs alle Kanäle >80dB (UCM<4V) \$ tanäle >80dB (UCM<4V) nein nein	Temperaturfehler der internen Kompensation	-
Messprinzipsukzessive ApproximationGrundwandlungszeit480 μs alle KanäleStörspannungsunterdrückung für Frequenz>80dB (UCM<4V)	Technische Einheit der Temperaturmessung	-
Grundwandlungszeit 480 µs alle Kanäle Störspannungsunterdrückung für Frequenz >80dB (UCM<4V) Status, Alarm, Diagnosen Statusanzeige ja Alarme nein Prozessalarm nein	Auflösung in Bit	16
Störspannungsunterdrückung für Frequenz >80dB (UCM<4V) Status, Alarm, Diagnosen Statusanzeige ja Alarme nein Prozessalarm nein	Messprinzip	sukzessive Approximation
Status, Alarm, DiagnosenjaStatusanzeigejaAlarmeneinProzessalarmnein	Grundwandlungszeit	480 μs alle Kanäle
Statusanzeige ja Alarme nein Prozessalarm nein	Störspannungsunterdrückung für Frequenz	>80dB (UCM<4V)
Alarme nein Prozessalarm nein	Status, Alarm, Diagnosen	
Prozessalarm nein	Statusanzeige	ja
	Alarme	nein
Diagnosealarm nein	Prozessalarm	nein
	Diagnosealarm	nein

031-1CD45 - AI 4x16Bit 0(4)...20mA > Technische Daten

Artikelnr.	031-1CD45
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 4 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	
Isolierung geprüft mit	DC 500 V
Technische Daten Geberversorgung	
Anzahl Ausgänge	
Ausgangsspannung (typ)	
Ausgangsspannung (Nennwert)	
Kurzschlussschutz	-
Potenzialbindung	-
Datengrößen	
Eingangsbytes	8
Ausgangsbytes	0
Parameterbytes	9
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	60 g
Gewicht inklusive Zubehör	60 g

031-1CD45 - AI 4x16Bit 0(4)...20mA > Parametrierdaten

Artikelnr.	031-1CD45	
Gewicht Brutto	75 g	
Umgebungsbedingungen		
Betriebstemperatur	0 °C bis 60 °C	
Lagertemperatur	-25 °C bis 70 °C	
Zertifizierungen		
Zertifizierung nach UL	ja	
Zertifizierung nach KC	ja	

3.23.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
SUPR	1	Störfrequenzunterdrückung (SFU)	00h	01h	3100h	01h
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3101h	02h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	3102h	03h
CH2FN	1	Funktionsnummer Kanal 2	31h	82h	3103h	04h
CH3FN	1	Funktionsnummer Kanal 3	31h	83h	3104h	05h

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 1, 0: Störfrequenzunterdrückung Kanal 0 Bit 3, 2: Störfrequenzunterdrückung Kanal 1 Bit 5, 4: Störfrequenzunterdrückung Kanal 2 Bit 7, 6: Störfrequenzunterdrückung Kanal 3 00: deaktiviert 01: 60Hz 10: 50Hz
	z.B.: 10101010: alle Kanäle Störfrequenzunterdrückung 50Hz

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

031-1CD45 - AI 4x16Bit 0(4)...20mA > Diagnosedaten

0(4) ... 20mA

Messbereich	Strom	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(I)	(D)			
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	D = 27649
Siemens	20mA	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{1}{20}$
S7-Format	10mA	13824	3600h		
(31h)	0mA	0	0000h		$I = D \cdot \frac{20}{27648}$
	-3,52mA	-4864	ED00h	Untersteuerung	27648
0 20mA	25,00mA	20480	5000h	Übersteuerung	D 16304 I
Siemens	20mA	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{I}{20}$
S5-Format	10mA	8192	2000h		
(41h)	0mA	0	0000h		$I = D \cdot \frac{20}{16384}$
	-4,00mA	-3277	F333h	Untersteuerung	16384
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{I-4}{16}$
Siemens	20mA	27648	6C00h	Nennbereich	16
S7-Format	12mA	13824	3600h		$I = D \cdot \frac{16}{27648} + 4$
(30h)	4mA	0	0000h		$T = D \cdot \frac{1}{27648} + 4$
	1,19mA	-4864	ED00h	Untersteuerung	
4 20mA	24,00mA	20480 5000h Übersteuer	Übersteuerung	$D = 16384 \cdot \frac{I-4}{16}$	
Siemens	20mA	16384	4000h	Nennbereich	16
S5-Format	12mA	8192	2000h		16
(40h)	4mA	0	0000h		$I = D \cdot \frac{16}{16384} + 4$
	0,8mA	-3277	F333h	Untersteuerung	

3.23.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- Versorgungsspannung fehlt
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

031-1CD45 - AI 4x16Bit 0(4)...20mA > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	■ Bit 3 0: Modulklasse — 0101b Analogbaugruppe
	Bit 4: Kanalinformation vorhandenBit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

031-1CD45 - AI 4x16Bit 0(4)...20mA > Diagnosedaten

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0			
0	Kanalspezifische Fehler: Kanal x:			
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 5 1: reserviert Bit 6: gesetzt bei Messbereichsunterschreitung Bit 7: gesetzt bei Messbereichsüberschreitung 			

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

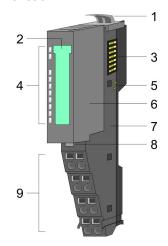
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

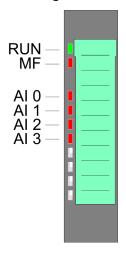
Im SLIO-Modul befindet sich ein 32-Bit Timer (µs-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1µs wieder bei 0 beginnt.

031-1CD70 - AI 4x16Bit ±10V


3.24 031-1CD70 - AI 4x16Bit ±10V

Eigenschaften

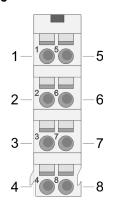
Das Elektronikmodul besitzt 4 Eingänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

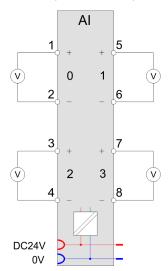

- 4 analoge Eingänge
- Geeignet für Geber mit ±10V, 0 ... 10V
- Alarm- und Diagnosefunktion
- Parametrierbare Störfrequenzunterdrückung (50/60Hz)
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	Al x	Beschreibung
		X	Bus-Kommunikation ist OK Modul-Status ist OK
	•	x	Bus-Kommunikation ist OK Modul-Status meldet Fehler
	•	x	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler <i>∜</i> Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
		•	Fehler Kanal x ■ Signal liegt außerhalb des Messbereichs ■ Fehler in der Parametrierung
nicht relevan	t: X		

031-1CD70 - AI 4x16Bit ±10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	+AI 2	E	+ Kanal 2
4	-AI 2	E	Masse Kanal 2
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	+AI 3	E	+ Kanal 3
8	-AI 3	E	Masse Kanal 3

E: Eingang

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	Al 3	2	Analogwert Kanal 3	6401h/s+3	04h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

031-1CD70 - AI 4x16Bit ±10V > Technische Daten

3.24.1 Technische Daten

Artikelnr.	031-1CD70
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	040E 1544
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	65 mA
Verlustleistung	0,9 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	25 mA
Spannungseingänge	✓
min. Eingangswiderstand im Spannungsbereich	200 kΩ
Eingangsspannungsbereiche	-10 V +10 V
	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,2%
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	+/-0,1%
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	max. 30V
Stromeingänge	-
max. Eingangswiderstand im Strombereich	-
Eingangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	-
Zerstörgrenze Stromeingänge (Strom)	-
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-

031-1CD70 - Al 4x16Bit ±10V > Technische Daten

Artikelnr.	031-1CD70
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	-
Technische Einheit der Temperaturmessung	-
Auflösung in Bit	16
Messprinzip	sukzessive Approximation
Grundwandlungszeit	480 μs alle Kanäle
Störspannungsunterdrückung für Frequenz	>80dB bei 50Hz (UCM<9V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja, parametrierbar
Prozessalarm	ja, parametrierbar
Diagnosealarm	ja, parametrierbar
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-

031-1CD70 - AI 4x16Bit ±10V > Technische Daten

Artikelnr.	031-1CD70
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 9 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	8
Ausgangsbytes	0
Parameterbytes	32
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g
Gewicht inklusive Zubehör	61 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

031-1CD70 - AI 4x16Bit ±10V > Parametrierdaten

3.24.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose*	00h	00h	3100h	01h
RES1	1	reserviert*	00h	00h	3101h	02h
LIMIT_EN	1	Grenzwertüberwachung*	00h	00h	3102h	03h
SUPR	1	Störfrequenzunterdrückung (SFU)	00h	01h	3103h	04h
CH0FN	1	Funktionsnummer Kanal 0	12h	80h	3104h	05h
RES7	1	reserviert	00h	80h	3105h	06h
CH0UL	2	Oberer Grenzwert Kanal 0	7FFFh	80h	3106h31 07h	07h
CH0LL	2	Unterer Grenzwert Kanal 0	8000h	80h	3108h31 09h	08h
CH1FN	1	Funktionsnummer Kanal 1	12h	81h	310Ah	09h
RES13	1	reserviert	00h	81h	310Bh	0Ah
CH1UL	2	Oberer Grenzwert Kanal 1	7FFFh	81h	310Ch31 0Dh	0Bh
CH1LL	2	Unterer Grenzwert Kanal 1	8000h	81h	310Eh31 0Fh	0Ch
CH2FN	1	Funktionsnummer Kanal 2	12h	82h	3110h	0Dh
RES19	1	reserviert	00h	82h	3111h	0Eh
CH2UL	2	Oberer Grenzwert Kanal 2	7FFFh	82h	3112h31 13h	0Fh
CH2LL	2	Unterer Grenzwert Kanal 2	8000h	82h	3114h31 15h	10h
CH3FN	1	Funktionsnummer Kanal 3	12h	83h	3116h	11h
RES25	1	reserviert	00h	83h	3117h	12h
CH3UL	2	Oberer Grenzwert Kanal 3	7FFFh	83h	3118h31 19h	13h
CH3LL	2	Unterer Grenzwert Kanal 3	8000h	83h	311Ah31 1Bh	14h
* Diesen Datensatz d	ürfen Sie ausschli	eßlich im STOP-Zustand übertragen.				

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm- 00h: sperren- 40h: freigeben

031-1CD70 - AI 4x16Bit ±10V > Parametrierdaten

■ Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

LIMIT_EN Grenzwertüberwachung

Byte	Bit 7 0		
0	 Bit 0: Grenzwertüberwachung Kanal 0 (1: an) Bit 1: Grenzwertüberwachung Kanal 1 (1: an) Bit 2: Grenzwertüberwachung Kanal 2 (1: an) Bit 3: Grenzwertüberwachung Kanal 3 (1: an) Bit 7 4: reserviert 		

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 1, 0: Störfrequenzunterdrückung Kanal 0 Bit 3, 2: Störfrequenzunterdrückung Kanal 1 Bit 5, 4: Störfrequenzunterdrückung Kanal 2 Bit 7, 6: Störfrequenzunterdrückung Kanal 3 - 00: deaktiviert - 01: 60Hz - 10: 50Hz z.B.: 10101010:
	alle Kanäle Störfrequenzunterdrückung 50Hz

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

031-1CD70 - AI 4x16Bit ±10V > Parametrierdaten

±10V

Messbereich (FktNr.)	Spannung (U)	Dezimal (D)	Hex	Bereich	Umrechnung
±10V	11,76V	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{10}$
(12h)	5V	13824	3600h		10
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$
	-5V	-13824	CA00h		2/048
	-10V	-27648	9400h		
	-11,76V	-32512	8100h	Untersteuerung	
±10V	12,5V	20480	5000h	Übersteuerung	D 16204 U
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$
(22h)	5V	8192	2000h		
	0V	0	0000h		$U = D \cdot \frac{10}{16384}$
	-5V	-8192	E000h		16384
	-10V	-16384	C000h		
	-12,5V	-20480	B000h	Untersteuerung	

0 ... 10V

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(U)	(D)				
0 10V	11,76V	32511	7EFFh	Übersteuerung	$D = 27648 \cdot \frac{U}{10}$	
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$D = 27048 \cdot \frac{10}{10}$	
(10h)	5V	13824	3600h		10	
	0V	0	0000h		$U = D \cdot \frac{10}{27648}$	
	-1,76V	-4864	ED00h	Untersteuerung	27040	
0 10V	12,5V	20480	5000h	Übersteuerung	D 16294 U	
Siemens S5-Format	10V	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{10}$	
(20h)	5V	8192	2000h			
	0V	0	0000h		$U = D \cdot \frac{10}{16224}$	
	-2V	-3277	F333h	Untersteuerung	16384	

CHxUL CHxLL Oberer Grenzwert Unterer Grenzwert Kanal x Sie können für jeden Kanal einen *Oberen* bzw. *Unteren* Grenzwert definieren. Hierbei können Sie ausschließlich Werte aus dem Nennbereich vorgeben, ansonsten erhalten Sie einen Parametrierfehler. Durch Angabe von 7FFFh für den oberen bzw. 8000h für den unteren Grenzwert wird der entsprechende Grenzwert deaktiviert. Sobald sich Ihr Messwert außerhalb eines Grenzwerts befindet und Sie die Grenzwertüberwachung aktiviert haben, wird ein Prozessalarm ausgelöst.

031-1CD70 - AI 4x16Bit ±10V > Diagnose und Alarm

3.24.3 Diagnose und Alarm

Auslöser	Prozessalarm	Diagnosealarm	parametrierbar
Projektierungs-/ Parametrierungs-fehler	-	X	-
Messbereichsüberschreitung	-	X	-
Messbereichsunterschreitung	-	X	-
Grenzwertüberschreitung	X	-	X
Grenzwertunterschreitung	X	-	X
Diagnosepufferüberlauf	-	X	-
Kommunikationsfehler	-	X	-
Prozessalarm verloren	-	X	-

Prozessalarmdaten

Damit Sie auf asynchrone Ereignisse reagieren können, haben Sie die Möglichkeit Prozessalarme zu aktivieren. Ein Prozessalarm unterbricht den linearen Programmablauf und verzweigt je nach Master-System in eine bestimmte Interrupt-Routine. Hier können Sie entsprechend auf den Prozessalarm reagieren.

Bei CANopen werden die Prozessalarmdaten über ein Emergency-Telegramm übertragen.

Bei Zugriff über CPU, PROFIBUS und PROFINET erfolgt die Übertragung der Prozessalarmdaten mittels Diagnosetelegramm.

SX - Subindex für Zugriff über EtherCAT mit Index 5000h

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	SX
PRIT_OL	1	Oberer Grenzwert Kanal x überschritten	00h	02h
PRIT_UL	1	Unterer Grenzwert Kanal x überschritten	00h	03h
PRIT_US	2	µs-Ticker	00h	04h (High-Byte)
				05h (Low-Byte)

PRIT_OL Grenzwertüberschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertüberschreitung Kanal 0 Bit 1: Grenzwertüberschreitung Kanal 1 Bit 2: Grenzwertüberschreitung Kanal 2 Bit 3: Grenzwertüberschreitung Kanal 3 Bit 7 4: reserviert

031-1CD70 - AI 4x16Bit ±10V > Diagnose und Alarm

PRIT_UL Grenzwertunterschreitung

Byte	Bit 7 0
0	 Bit 0: Grenzwertunterschreitung Kanal 0 Bit 1: Grenzwertunterschreitung Kanal 1 Bit 2: Grenzwertunterschreitung Kanal 2 Bit 3: Grenzwertunterschreitung Kanal 3 Bit 7 4: reserviert

PRIT US µs-Ticker

Byte	Bit 7 0
0 1	Wert des µs-Ticker bei Auftreten des Prozessalarms

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} -1 μ s wieder bei 0 beginnt. PRIT_US repräsentiert die unteren 2 Byte des μ s-Ticker-Werts (0 ... 2^{16} -1).

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose kommend bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm gehend. Wurde für einen Kanal ein Diagnosealarm kommend wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm gehend verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm kommend bis letzter Diagnosealarm gehend) leuchtet die MF-LED des Moduls.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- Prozessalarm verloren
- Versorgungsspannung fehlt
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h

031-1CD70 - AI 4x16Bit ±10V > Diagnose und Alarm

Name	Bytes	Funktion	Default	DS	IX	SX
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERRC H7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	µs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung
	Bit 6 5: reserviertBit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0							
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 5: reserviert Bit 6: gesetzt bei Prozessalarm verloren Bit 7: reserviert 							

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

031-1CD70 - AI 4x16Bit ±10V > Diagnose und Alarm

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0								
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert 								

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0							
0	Kanalspezifische Fehler: Kanal x:							
	Bit 0: gesetzt bei Projektierungs-/ParametrierungsfehlerBit 4 1: reserviert							
	■ Bit 5: gesetzt bei Prozessalarm verloren							
	Bit 6: gesetzt bei MessbereichsunterschreitungBit 7: gesetzt bei Messbereichsüberschreitung							

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

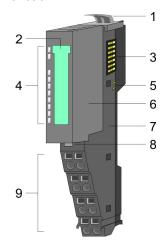
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

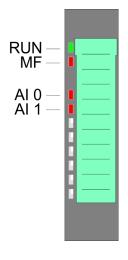
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1LB90 - AI 2x16Bit TC


3.25 031-1LB90 - AI 2x16Bit TC

Eigenschaften

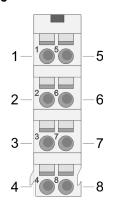
Das Elektronikmodul besitzt 2 Eingänge zur Temperatur- und Spannungsmessung, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt.

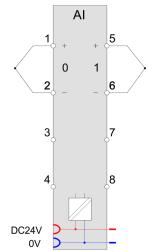

- 2 analoge Eingänge
- Geeignet für Geber vom Typ J, K, N, R, S, T, B, C, E, L und für Spannungsmessung ±
- Diagnosefunktion
- 16Bit Auflösung
- Interne Temperaturkompensation
- Hohe Potenzialdifferenz zwischen den Eingängen von DC140V/AC60V

Aufbau

- Verriegelungshebel Terminal-Modul 1
- 2 Beschriftungsstreifen
- Rückwandbus
- LED-Statusanzeige 4
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- Anschlussklemmen

Statusanzeige




RUN	MF	Al x	Beschreibung	
grün	rot	rot	Describing	
		X	Bus-Kommunikation ist OK	
			Modul-Status ist OK	
		X	Bus-Kommunikation ist OK	
			Modul-Status meldet Fehler	
		X	Bus-Kommunikation nicht möglich	
			Modul-Status meldet Fehler	
		X	Fehler Busversorgungsspannung	
X	ZHz	X	Konfigurationsfehler & Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30	
			Fehler Kanal x	
•			 Signal liegt außerhalb des Messbereichs Fehler in der Parametrierung Drahtbruch (falls parametriert) 	
nicht relevant: X				

031-1LB90 - AI 2x16Bit TC

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+TC 0	E	+ Kanal 0
2	-TC 0	E	Masse Kanal 0
3			nicht belegt
4			nicht belegt
5	+TC 1	E	+ Kanal 1
6	-TC 1	E	Masse Kanal 1
7			nicht belegt
8			nicht belegt

E: Eingang

VORSICHT!

Bitte beachten Sie, dass das Elektronik-Modul AI 2x16Bit TC ausschließlich mit dem Terminal-Modul 001-0AA20 betrieben werden darf!

Bitte achten Sie beim Anschluss der Messwertgeber immer auf richtige Polarität! Schließen Sie nicht benutzte Eingänge kurz, indem Sie den positiven Anschluss und die Kanal-Masse des jeweiligen Kanals miteinander verbinden.

Ergänzung zu den Aufbaurichtlinien

Zur Vermeidung von Temperaturschwankungen innerhalb des Moduls, welche die Genauigkeit der Messung beeinflussen können, sollten Sie bei der Montage folgende Punkte beachten:

- Ordnen Sie das Modul nicht unmittelbar neben einem Power-Modul mit einem hohen Einspeisestrom an.
- Montieren Sie das Modul nicht an das Ende einer Zeile.

031-1LB90 - Al 2x16Bit TC > Technische Daten

 Das Modul sollte sich in einem statischen Zustand befinden, d.h. die Temperatur sollte in der Umgebung Ihres Moduls möglichst konstant sein (geschlossener Schaltschrank ohne Luftzug).

Die Genauigkeit wird nach ca. 30 Minuten nach Eintritt in den statischen Zustand erreicht.

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	AI 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.25.1 Technische Daten

Artikelnr.	031-1LB90
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	040F 1543
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	55 mA
Verlustleistung	1 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	30 mA
Spannungseingänge	-
min. Eingangswiderstand im Spannungsbereich	10 ΜΩ
Eingangsspannungsbereiche	-80 mV +80 mV
Gebrauchsfehlergrenze Spannungsbereiche	±0,3%
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	±0,1%
Grundfehlergrenze Spannungsbereiche	±0,25%
Grundfehlergrenze Spannungsbereiche mit SFU	±0,05%
Zerstörgrenze Spannung	max. 20V

031-1LB90 - AI 2x16Bit TC > Technische Daten

Artikelnr.	031-1LB90
Stromeingänge	-
max. Eingangswiderstand im Strombereich	-
Eingangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	-
Zerstörgrenze Stromeingänge (Strom)	-
Widerstandseingänge	-
Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche	-
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	-
Grundfehlergrenze Widerstandsbereiche	-
Grundfehlergrenze Widerstandsbereiche mit SFU	-
Zerstörgrenze Widerstandseingänge	-
Widerstandsthermometereingänge	-
Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	-
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Grundfehlergrenze Widerstandsthermometerbereiche	-
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	-
Zerstörgrenze Widerstandsthermometereingänge	-
Thermoelementeingänge	✓
Thermoelementbereiche	Тур В
	Тур С
	Typ E
	Typ J
	Тур К
	Typ L
	Typ N
	Typ R
	Typ S
	Тур Т
Gebrauchsfehlergrenze Thermoelementbereiche	Typ E, L, T, J, K, N: ± 2.5 K / Typ B, C, R, S: ± 8.0 K $_{CR}$
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	Typ E, L, T, J, K, N: ±1,5K / Typ B, C, R, S: ±4,0K

031-1LB90 - AI 2x16Bit TC > Technische Daten

Artikelnr.	031-1LB90
Grundfehlergrenze Thermoelementbereiche	Typ E, L, T, J, K, N: ±2,0K / Typ B, C, R, S: ±7,0K
Grundfehlergrenze Thermoelementbereiche mit SFU	Typ E, L, T, J, K, N: ±1,0K / Typ B, C, R, S: ±3,0K
Zerstörgrenze Thermoelementeingänge	max. 20V
Temperaturkompensation parametrierbar	✓
Temperaturkompensation extern	✓
Temperaturkompensation intern	✓
Temperaturfehler der internen Kompensation	1 K
Technische Einheit der Temperaturmessung	°C, °F, K
Auflösung in Bit	16
Messprinzip	Sigma-Delta
Grundwandlungszeit	84,2 ms (50 Hz) 70,5 ms (60 Hz) pro Kanal
Störspannungsunterdrückung für Frequenz	>90dB bei 50Hz (UCM<10V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja
Prozessalarm	nein
Diagnosealarm	ja, parametrierbar
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	-
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	

031-1LB90 - AI 2x16Bit TC > Technische Daten

Artikelnr.	031-1LB90
Eingangsbytes	4
Ausgangsbytes	0
Parameterbytes	10
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	58 g
Gewicht inklusive Zubehör	58 g
Gewicht Brutto	72 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

Die angegebenen Fehlergrenzen gelten ab folgenden Temperaturen:

- Thermoelement Typ T: -200 °C
- Thermoelement Typ K: -100 °C
- Thermoelement Typ B: +700 °C
- Thermoelement Typ N: -150 °C
- Thermoelement Typ E: -150 °C
- Thermoelement Typ R: +200 °C
- Thermoelement Typ S: +100 °C
- Thermoelement Typ J: -100 °C
- SFU: Störfrequenzunterdrückung

031-1LB90 - Al 2x16Bit TC > Parametrierdaten

3.25.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose*	00h	00h	3100h	01h
WIBRK_EN	1	Drahtbrucherkennung*	00h	00h	3101h	02h
TEMPCNF	1	Temperatursystem	00h	01h	3102h	03h
SUPR	1	Störfrequenzunterdrückung (SFU)	02h	01h	3103h	04h
CH0FN	1	Funktionsnummer Kanal 0	C1h	80h	3104h	05h
CH1FN	1	Funktionsnummer Kanal 1	C1h	81h	3105h	06h
* Diesen Datensatz dürfen Sie ausschließlich im STOP-Zustand übertragen.						

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm00h: sperren40h: freigeben

Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

WIBRK_EN Drahtbrucherkennung

Byte	Bit 7 0
0	 Bit 0: Drahtbrucherkennung Kanal 0 (1: an) Bit 1: Drahtbrucherkennung Kanal 1 (1: an) Bit 7 2: reserviert

Aufgrund der hohen Empfindlichkeit der Eingänge sollten nicht verwendete Eingänge in der Parametrierung deaktiviert werden. Offene Eingänge können aufgrund der hohen Eingangsimpedanz durch benachbarte Kanäle bzw. bedingt durch das Messverfahren bei der Drahtbrucherkennung beeinflusst werden. Da der gesamte Messbereich sich im mV-Bereich bewegt, können durch offene Eingänge bereits Messbereichsüberschreitungen erkannt werden.

TEMPCNF Temperatursystem

Byte	Bit 7 0
0	■ Bit 0, 1: Temperatursystem - 00: °C - 01: °F - 10: K ■ Bit 7 2: reserviert

031-1LB90 - AI 2x16Bit TC > Parametrierdaten

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 0, 1: Störfrequenzunterdrückung - 01: 60Hz - 10: 50Hz Bit 7 2: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert.

Spannung

-80 ... 80mV

Messbereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
-80 80mV	94,07mV	32511	7EFFh	Übersteuerung	D 27649 U
Siemens S7-Format	80mV	27648	6C00h	Nennbereich	$D = 27648 \cdot \frac{U}{80}$
(11h)	0V	0	0000h		
	-80mV	-27648	9400h		$U = D \cdot \frac{80}{27648}$
	-94,07mV	-32512	8100h	Untersteuerung	27648
-80 80mV	100mV	20480	5000h	Übersteuerung	D 16204 U
Siemens S5-Format	80mV	16384	4000h	Nennbereich	$D = 16384 \cdot \frac{U}{80}$
(21h)	0V	0	0000h		
	-80mV	-16384	C000h		$U = D \cdot \frac{80}{16384}$
	-100mV	-20480	B000h	Untersteuerung	16384

Temperatur

Messbereich	Messwert in °C	Messwert in °F	Messwert in K	Bereich
(FktNr.)	(0,1°C/Digit)	(0,1°F/Digit)	(0,1K/Digit)	
Typ J:	+14500	26420	17232	Übersteuerung
[Fe-Cu-Ni IEC]	-2100 +12000	-3460 21920	632 14732	Nennbereich
-210 +1200°C -346 2192°F 63,2 1473,2K (B0h: ext. Komp. 0°C) (C0h: int. Komp. 0°C)				Untersteuerung
Typ K:	+16220	29516	18952	Übersteuerung
[Ni-Cr-Ni] -270 +1372°C -454 2501,6°F 0 1645,2K	-2700 +13720	-4540 25016	0 16452	Nennbereich

031-1LB90 - Al 2x16Bit TC > Parametrierdaten

Messbereich	Messwert in °C	Messwert in °F	Messwert in K	Bereich
(FktNr.)	(0,1°C/Digit)	(0,1°F/Digit)	(0,1K/Digit)	
(B1h: ext. Komp. 0°C) (C1h: int. Komp. 0°C)				Untersteuerung
Typ N:	+15500	28220	18232	Übersteuerung
[Ni-Cr-Si]	-2700 +13000	-4540 23720	0 15732	Nennbereich
-270 +1300°C -454 2372°F 0 1573,2K (B2h: ext. Komp. 0°C) (C2h: int. Komp. 0°C)				Untersteuerung
Typ R:	+20190	32766	22922	Übersteuerung
[PtRh-Pt]	-500 +17690	-580 32162	2232 20422	Nennbereich
-50 +1769°C -58 3216,2°F 223,2 2042,2K (B3h: ext. Komp. 0°C) (C3h: int. Komp. 0°C)	-1700	-2740	1032	Untersteuerung
Typ S:	+20190	32766	22922	Übersteuerung
[PtRh-Pt]	-500 + 17690	-580 32162	2232 20422	Nennbereich
-50 +1769°C -58 3216,2°F 223,2 2042,2K (B4h: ext. Komp. 0°C) (C4h: int. Komp. 0°C)	-1700	-2740	1032	Untersteuerung
Тур Т:	+5400	10040	8132	Übersteuerung
[Cu-Cu-Ni]	-2700 +4000	-4540 7 520	32 6732	Nennbereich
-270 +400°C -454 752°F 3,2 673,2K (B5h: ext. Komp. 0°C) (C5h: int. Komp. 0°C)				Untersteuerung
Тур В:	+20700	32766	23432	Übersteuerung
[PtRh-PtRh]	0 +18200	320 27865	2732 20932	Nennbereich
0 +1820°C 32 2786,5°F 273,2 2093,2K (B6h: ext. Komp. 0°C) (C6h: int. Komp. 0°C)	-1200	-1840	1532	Untersteuerung
Тур С:	+25000	32766	23432	Übersteuerung

031-1LB90 - AI 2x16Bit TC > Diagnosedaten

Messbereich (FktNr.)	Messwert in °C (0,1°C/Digit)	Messwert in °F (0,1°F/Digit)	Messwert in K (0,1K/Digit)	Bereich
[WRe5-WRe26]	0 +23150	320 27865	2732 20932	Nennbereich
0 +2315°C 32 2786,5°F 273,2 2093,2K (B7h: ext. Komp. 0°C) (C7h: int. Komp. 0°C)	-1200	-1840	1532	Untersteuerung
Typ E:	+12000	21920	14732	Übersteuerung
[Ni-Cr - Cu-Ni]	-2700 +10000	-4540 18320	0 12732	Nennbereich
-270 +1000°C -454 1832°F 0 1273,2K (B8h: ext. Komp. 0°C) (C8h: int. Komp. 0°C)				Untersteuerung
Typ L:	+11500	21020	14232	Übersteuerung
[Fe-Cu-Ni]	-2000 +9000	-3280 16520	732 11732	Nennbereich
-200 +900°C -328 1652°F 73,2 1173,2K (B9h: ext. Komp. 0°C) (C9h: int. Komp. 0°C)				Untersteuerung

3.25.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

031-1LB90 - AI 2x16Bit TC > Diagnosedaten

Name	Bytes	Funktion Default DS IX		IX	SX	
ERR_A	1	Diagnose	00h	01h 2F01h		02h
MODTYP	1	Modulinformation 15h			03h	
RES2	1	reserviert	rviert 00h		04h	
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	l Diagnosebits pro Kanal 08h		07h	
NUMCH	1	Anzahl Kanäle des Moduls 02h		08h		
CHERR	1	Kanalfehler	00h		09h	
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert 00h			0Ch 11h	
DIAG_US	4	μs-Ticker 00h			13h	

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0		
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert 		

031-1LB90 - AI 2x16Bit TC > Diagnosedaten

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0			
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 			

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0			
0	Kanalspezifische Fehler: Kanal x:			
	■ Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler			
	■ Bit 3 1: reserviert			
	■ Bit 4: gesetzt bei Drahtbruch			
	■ Bit 5: reserviert			
	■ Bit 6: gesetzt bei Messbereichsunterschreitung			
	■ Bit 7: gesetzt bei Messbereichsüberschreitung			

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

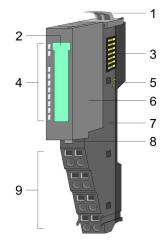
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

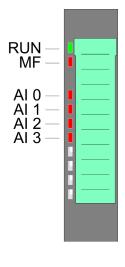
Im SLIO-Modul befindet sich ein 32-Bit Timer (µs-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1µs wieder bei 0 beginnt.

031-1LD80 - AI 4x16Bit R/RTD


3.26 031-1LD80 - AI 4x16Bit R/RTD

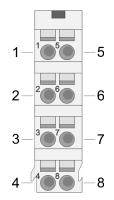
Eigenschaften

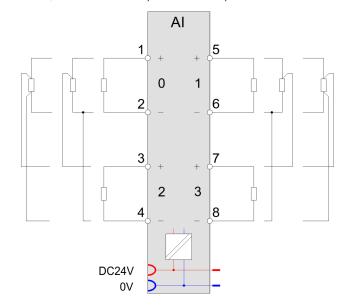
Das Elektronikmodul besitzt 4 Eingänge für Widerstandsgeber, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt.


- 4 analoge Eingänge
- Geeignet f
 ür Widerstandsgeber 0 ... 3000Ω und Widerstandstemperaturgeber Pt100, Pt1000, NI100 und NI1000
- Widerstandsmessung 2-, 3- und 4-Leiter
 (3- und 4-Leiter ausschließlich über Kanal 0 bzw. 1)
- Diagnosefunktion
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen


Statusanzeige


RUN grün	MF rot	Al x rot	Beschreibung
		Х	Bus-Kommunikation ist OK
			Modul-Status ist OK
		X	Bus-Kommunikation ist OK
		^	Modul-Status meldet Fehler
		Χ	Bus-Kommunikation nicht möglich
		^	Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler $\%$ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			 Signal liegt außerhalb des Messbereichs Fehler in der Parametrierung Drahtbruch (falls parametriert)
nicht relevant: X			

031-1LD80 - AI 4x16Bit R/RTD

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	+AI 0	E	+ Kanal 0
2	-AI 0	E	Masse Kanal 0
3	+AI 2	E	+ Kanal 2
4	-AI 2	E	Masse Kanal 2
5	+AI 1	E	+ Kanal 1
6	-AI 1	E	Masse Kanal 1
7	+AI 3	E	+ Kanal 3
8	-AI 3	E	Masse Kanal 3

E: Eingang

2-, 3-, 4-Leiter-Messung

Der Anschlussbelegung oben können Sie entnehmen, wie Sie ihre Sensoren bei 2-, 3-bzw. 4-Leiter-Messung anzuschließen haben.

- Mit allen Kanälen können Sie eine 2-Leiter-Messung durchführen.
- Eine 3-Leiter-Messung ist nur an den Kanälen 0 und 1 möglich.
 - Bitte beachten Sie, dass Sie bei der 3-Leiter-Messung immer den jeweils korrespondierenden Kanal in der Parametrierung zu deaktivieren haben. Der korrespondierende Kanal von Kanal 0 ist Kanal 2 und von Kanal 1 der Kanal 3. Unbenutzte Kanäle sind in der Parametrierung immer zu deaktivieren.
- Eine 4-Leiter-Messung ist nur an den Kanälen 0 und 1 möglich.
 - Der Messstrom für Kanal 0 wird auf den Pins 1 und 2 ausgegeben. Die Messung für Kanal 0 findet an den Pins 3 und 4 statt. Der Analogwert für Kanal 0 wird im EW 0 dargestellt.
 - Der Messstrom für Kanal 1 wird auf den Pins 5 und 6 ausgegeben. Die Messung für Kanal 1 findet an den Pins 7 und 8 statt. Der Analogwert für Kanal 1 wird im EW 1 dargestellt.
 - Bitte beachten Sie, dass Sie bei der 4-Leiter-Messung immer den jeweils korrespondierenden Kanal in der Parametrierung zu deaktivieren haben. Der korrespondierende Kanal von Kanal 0 ist Kanal 2 und von Kanal 1 der Kanal 3. Unbenutzte Kanäle sind in der Parametrierung immer zu deaktivieren.

031-1LD80 - AI 4x16Bit R/RTD > Technische Daten

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Bytes	Funktion	IX	SX
+0	Al 0	2	Analogwert Kanal 0	6401h/s	01h
+2	Al 1	2	Analogwert Kanal 1	6401h/s+1	02h
+4	Al 2	2	Analogwert Kanal 2	6401h/s+2	03h
+6	Al 3	2	Analogwert Kanal 3	6401h/s+3	04h

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich.

3.26.1 Technische Daten

Artikelnr.	031-1LD80
Bezeichnung	SM 031 - Analoge Eingabe
Modulkennung	0410 1544
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	55 mA
Verlustleistung	1 W
Technische Daten Analoge Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Stromaufnahme aus Lastspannung L+ (ohne Last)	30 mA
Spannungseingänge	-
min. Eingangswiderstand im Spannungsbereich	-
Eingangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche mit SFU	-
Grundfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche mit SFU	-
Zerstörgrenze Spannung	-
Stromeingänge	-
max. Eingangswiderstand im Strombereich	-

031-1LD80 - AI 4x16Bit R/RTD > Technische Daten

Artikelnr.	031-1LD80
Eingangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Gebrauchsfehlergrenze Strombereiche mit SFU	-
Grundfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche mit SFU	-
Zerstörgrenze Stromeingänge (Spannung)	-
Zerstörgrenze Stromeingänge (Strom)	-
Widerstandseingänge	✓
Widerstandsbereiche	0 60 Ohm 0 600 Ohm
	0 3000 Ohm
Gebrauchsfehlergrenze Widerstandsbereiche	+/- 0,4 %
Gebrauchsfehlergrenze Widerstandsbereiche mit SFU	+/- 0,2 %
Grundfehlergrenze Widerstandsbereiche	+/- 0,2 %
Grundfehlergrenze Widerstandsbereiche mit SFU	+/- 0,1 %
Zerstörgrenze Widerstandseingänge	max. 24V
Widerstandsthermometereingänge	✓
Widerstandsthermometerbereiche	Pt100 Pt1000 Ni100 Ni1000
Gebrauchsfehlergrenze Widerstandsthermometerbereiche	+/- 0,4 %
Gebrauchsfehlergrenze Widerstandsthermometerbereiche mit SFU	+/- 0,2 %
Grundfehlergrenze Widerstandsthermometerbereiche	+/- 0,2 %
Grundfehlergrenze Widerstandsthermometerbereiche mit SFU	+/- 0,1 %
Zerstörgrenze Widerstandsthermometereingänge	max. 24V
Thermoelementeingänge	-
Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche	-
Gebrauchsfehlergrenze Thermoelementbereiche mit SFU	-
Grundfehlergrenze Thermoelementbereiche	-
Grundfehlergrenze Thermoelementbereiche mit SFU	-
Zerstörgrenze Thermoelementeingänge	-
Temperaturkompensation parametrierbar	-
Temperaturkompensation extern	-

031-1LD80 - AI 4x16Bit R/RTD > Technische Daten

Artikelnr.	031-1LD80
Temperaturkompensation intern	-
Temperaturfehler der internen Kompensation	
Technische Einheit der Temperaturmessung	°C, °F, K
Auflösung in Bit	16
Messprinzip	Sigma-Delta
Grundwandlungszeit	84,2 ms (50 Hz) 70,5 ms (60 Hz) pro Kanal
Störspannungsunterdrückung für Frequenz	>80dB bei 50Hz (UCM<6V)
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja, parametrierbar
Prozessalarm	nein
Diagnosealarm	ja, parametrierbar
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	-
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	DC 6 V
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	8
Ausgangsbytes	0
Parameterbytes	12
Diagnosebytes	20
Gehäuse	

031-1LD80 - AI 4x16Bit R/RTD > Technische Daten

Artikelnr.	031-1LD80
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g
Gewicht inklusive Zubehör	61 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

SFU: Störfrequenzunterdrückung

031-1LD80 - AI 4x16Bit R/RTD > Parametrierdaten

3.26.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnose ¹	00h	00h	3100h	01h
WIBRK_EN	1	Drahtbrucherkennung ¹	00h	00h	3101h	02h
TEMPCNF	1	Temperatursystem	00h	01h	3102h	03h
SUPR	1	Störfrequenzunterdrückung (SFU)	02h	01h	3103h	04h
CH0FN	1	Funktionsnummer Kanal 0	50h	80h	3104h	05h
CH1FN	1	Funktionsnummer Kanal 1	50h	81h	3105h	06h
CH2FN	2	Funktionsnummer Kanal 2	50h ²	82h	3106h	07h
CH3FN	2	Funktionsnummer Kanal 3	50h ²	83h	3107h	08h

¹⁾ Diesen Datensatz dürfen Sie ausschließlich im STOP-Zustand übertragen.

DIAG_EN Diagnosealarm

Byte	Bit 7 0
0	Diagnosealarm00h: sperren40h: freigeben

■ Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

WIBRK_EN Drahtbrucherkennung

Byte	Bit 7 0
0	 Bit 0: Drahtbrucherkennung Kanal 0 (1: an) Bit 1: Drahtbrucherkennung Kanal 1 (1: an) Bit 2: Drahtbrucherkennung Kanal 2 (1: an) Bit 3: Drahtbrucherkennung Kanal 3 (1: an) Bit 7 4: reserviert

TEMPCNF Temperatur- system

Byte	Bit 7 0
0	 ■ Bit 0, 1: Temperatursystem — 00: °C — 01: °F — 10: K ■ Bit 7 2: reserviert

²⁾ Im 2-Kanal-Betrieb FFh

031-1LD80 - AI 4x16Bit R/RTD > Parametrierdaten

SUPR Störfrequenzunterdrückung (SFU)

Byte	Bit 7 0
0	 Bit 0, 1: Störfrequenzunterdrückung 01: 60Hz 10: 50Hz Bit 7 2: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Messbereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert.

Messbereich	Messwert	Signalbereich	Bereich
(FktNr.)			
2-Leiter: PT100	+1000°C	+10000	Übersteuerung
(50h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
2-Leiter: PT1000	+1000°C	+10000	Übersteuerung
(51h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
2-Leiter: NI100	+295°C	+2950	Übersteuerung
(52h)	-60 +250°C	-600 + 2500	Nennbereich
	-105°C	-1050	Untersteuerung
2-Leiter: NI1000	+295°C	+2950	Übersteuerung
(53h)	-60 +250°C	-600 +2500	Nennbereich
	-105°C	-1050	Untersteuerung
3-Leiter: PT100	+1000°C	+10000	Übersteuerung
(58h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
3-Leiter: PT1000	+1000°C	+10000	Übersteuerung
(59h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung
3-Leiter: NI100	+295°C	+2950	Übersteuerung
(5Ah)	-60 +250°C	-600 + 2500	Nennbereich
	-105°C	-1050	Untersteuerung
3-Leiter: NI1000	+295°C	+2950	Übersteuerung
(5Bh)	-60 +250°C	-600 + 2500	Nennbereich
	-105°C	-1050	Untersteuerung
4-Leiter: PT100	+1000°C	+10000	Übersteuerung
(60h)	-200 +850°C	-2000 +8500	Nennbereich
	-243°C	-2430	Untersteuerung

031-1LD80 - AI 4x16Bit R/RTD > Parametrierdaten

(FktNr.) 4-Leiter: PT1000 +1000°C +10000 Übersteuerung (61h) -200 +850°C -2000 +8500 Nennbereich -243°C -2430 Untersteuerung 4-Leiter: NI100 +295°C +2950 Übersteuerung (62h) -60 +250°C -600 +2500 Nennbereich 4-Leiter: NI1000 +295°C -1050 Untersteuerung 4-Leiter: NI1000 +295°C +2950 Übersteuerung (63h) -60 +250°C -600 +2500 Nennbereich
(61h) -200 +850°C -2000 +8500 Nennbereich -243°C -2430 Untersteuerung 4-Leiter: NI100 +295°C +2950 Übersteuerung (62h) -60 +250°C -600 +2500 Nennbereich -105°C -1050 Untersteuerung 4-Leiter: NI1000 +295°C +2950 Übersteuerung
-243°C -2430 Untersteuerung 4-Leiter: NI100 +295°C +2950 Übersteuerung (62h) -60 +250°C -600 +2500 Nennbereich -105°C -1050 Untersteuerung 4-Leiter: NI1000 +295°C +2950 Übersteuerung
4-Leiter: NI100 +295°C +2950 Übersteuerung (62h) -60 +250°C -600 +2500 Nennbereich -105°C -1050 Untersteuerung 4-Leiter: NI1000 +295°C +2950 Übersteuerung
(62h) -60 +250°C -600 +2500 Nennbereich -105°C -1050 Untersteuerung 4-Leiter: NI1000 +295°C +2950 Übersteuerung
-105°C -1050 Untersteuerung 4-Leiter: NI1000 +295°C +2950 Übersteuerung
4-Leiter: NI1000 +295°C +2950 Übersteuerung
(63h) _60 +250°C
-00 1250 C
-105°C -1050 Untersteuerung
2-Leiter: $0 \dots 60\Omega$ Übersteuerung
$0 \dots 60 \Omega \hspace{1cm} 0 \dots 32767 \hspace{1cm} \text{Nennbereich}$
Untersteuerung
2-Leiter: $0 \dots 600\Omega$ Übersteuerung
$0 \dots 600\Omega \hspace{1cm} 0 \dots 32767 \hspace{1cm} \text{Nennbereich}$
Untersteuerung
2-Leiter: $0 \dots 3000\Omega$ Übersteuerung
$0 \dots 3000\Omega \hspace{1cm} 0 \dots 32767 \hspace{1cm} \text{Nennbereich}$
Untersteuerung
3-Leiter: $0 \dots 60\Omega$ Übersteuerung
$0 \dots 60 \Omega \hspace{1cm} 0 \dots 32767 \hspace{1cm} \text{Nennbereich}$
Untersteuerung
3-Leiter: $0 \dots 600\Omega$ Übersteuerung
$0 \dots 600\Omega \hspace{1cm} 0 \dots 32767 \hspace{1cm} \text{Nennbereich}$
Untersteuerung
3-Leiter: $0 \dots 3000\Omega$ Übersteuerung
$0 \dots 3000\Omega \hspace{1cm} 0 \dots 32767 \hspace{1cm} \text{Nennbereich}$
Untersteuerung
4-Leiter: $0 \dots 60\Omega$ Übersteuerung
$0 \dots 60 \Omega \hspace{1cm} 0 \dots 32767 \hspace{1cm} \text{Nennbereich}$
Untersteuerung
4-Leiter: 0 600Ω Übersteuerung
$0 \dots 600\Omega \hspace{1cm} 0 \dots 32767 \hspace{1cm} \text{Nennbereich}$
Untersteuerung
4-Leiter: 0 3000Ω Übersteuerung
$0 \dots 3000 \Omega \hspace{1cm} 0 \dots 32767 \hspace{1cm} \text{Nennbereich}$

031-1LD80 - AI 4x16Bit R/RTD > Parametrierdaten

(FktNr.) Untersteuerung 2-Leiter: 0 60Ω Ubersteuerung (90h) 0 60Ω 0 6000 Nennbereich Untersteuerung (90h) 0 60Ω 0 6000 Nennbereich Untersteuerung (91h) 0 600Ω 0 6000 Nennbereich Untersteuerung (92h) 0 3000Ω 0 3000Ω Nennbereich Untersteuerung (92h) 0 300Ω 0 3000Ω Nennbereich Untersteuerung (98h) 0 60Ω 0 6000 Nennbereich Untersteuerung (98h) 0 60Ω 0 6000 Nennbereich Untersteuerung (99h) 0 60ΩΩ 0 6000 Nennbereich Untersteuerung (99h) 0 60ΩΩ 0 6000 Nennbereich Untersteuerung (94h) 0 3000Ω 0 30000 Nennbereich Untersteuerung (94h) 0 3000Ω 0 30000 Nennbereich Untersteuerung (94h) 0 3000Ω Nennbereich Untersteuerung Untersteuerung (94h) 0 3000Ω Nennbereich Untersteuerung (94h) 0 3000Ω N	Messbereich	
2-Leiter: 0 60Ω Übersteuerung (90h) 0 60Ω 0 6000 Nennbereich Untersteuerung 2-Leiter: 0 600Ω Übersteuerung 2-Leiter: 0 3000Ω Übersteuerung 2-Leiter: 0 3000Ω Übersteuerung 3-Leiter: 0 60Ω Übersteuerung 3-Leiter: 0 60Ω Übersteuerung 3-Leiter: 0 60ΩΩ Übersteuerung 3-Leiter: 0 60ΩΩ Übersteuerung 3-Leiter: 0 3000Ω Übersteuerung 3-Leiter: 0 60Ω Übersteuerung 3-Leiter: 0 60Ω Übersteuerung <	(FktNr.)	
(90h) 0 60Ω 0 6000 Nennbereich Untersteuerung 2-Leiter: 0 600Ω Übersteuerung (91h) 0 600Ω 0 6000 Nennbereich Übersteuerung 2-Leiter: 0 3000Ω Übersteuerung (92h) 0 3000Ω Nennbereich Übersteuerung 3-Leiter: 0 60Ω Übersteuerung (98h) 0 60Ω 0 6000 Nennbereich Übersteuerung 3-Leiter: 0 600Ω Übersteuerung 3-Leiter: 0 3000Ω Übersteuerung 3-Leiter: 0 3000Ω Übersteuerung 4-Leiter: 0 60Ω Übersteuerung 4-Leiter: 0 60Ω Übersteuerung		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Leiter: 0 60Ω	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(90h)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Leiter: 0 600Ω	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(91h)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Leiter: 0 3000Ω	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(92h)	
	3-Leiter: 0 60Ω	
3 -Leiter: 0 600Ω	(98h)	
(99h) 0 600Ω 0 6000 Nennbereich Untersteuerung 3-Leiter: 0 3000Ω Übersteuerung (9Ah) 0 3000Ω 0 3000Ω Nennbereich Untersteuerung 4-Leiter: 0 60Ω Übersteuerung		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Leiter: 0 600Ω	
3-Leiter: 0 3000Ω	(99h)	
(9Ah) $0 \dots 3000\Omega$ $0 \dots 30000$ Nennbereich Untersteuerung 4-Leiter: $0 \dots 60\Omega$ Übersteuerung		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Leiter: 0 3000Ω	
4-Leiter: 0 60Ω Übersteuerung	(9Ah)	
(AOL)	4-Leiter: 0 60Ω	
(A0h) $0 \dots 60\Omega$ $0 \dots 6000$ Nennbereich	(A0h)	
Untersteuerung		
4-Leiter: $0 \dots 600\Omega$ Übersteuerung	4-Leiter: 0 600Ω	
(A1h) $0 \dots 600\Omega$ $0 \dots 6000$ Nennbereich	(A1h)	
Untersteuerung		
4-Leiter: $0 \dots 3000\Omega$ Übersteuerung	4-Leiter: 0 3000Ω	
$(\text{A2h}) \hspace{1cm} 0 \dots 3000\Omega \hspace{1cm} 0 \dots 30000 \hspace{1cm} \text{Nennbereich}$	(A2h)	
Untersteuerung		
2-Leiter: $0 \dots 60\Omega$ $70,55\Omega$ 32511 Übersteuerung	2-Leiter: 0 60Ω	
(D0h) $0 \dots 60\Omega$ $0 \dots 27648$ Nennbereich	(D0h)	
Untersteuerung		
2-Leiter: $0 \dots 600\Omega$ $705,5\Omega$ 32511 Übersteuerung	2-Leiter: 0 600Ω	
(D1h) $0 \dots 600\Omega$ $0 \dots 27648$ Nennbereich	(D1h)	
Untersteuerung		
2-Leiter: $0 \dots 3000\Omega$ 3528 Ω 32511 Übersteuerung	2-Leiter: 0 3000Ω	

031-1LD80 - AI 4x16Bit R/RTD > Diagnosedaten

Messbereich (FktNr.)	Messwert	Signalbereich	Bereich
(D2h)	$0 \dots 3000\Omega$	0 27648	Nennbereich
			Untersteuerung
3-Leiter: 0 60Ω	$70,55\Omega$	32511	Übersteuerung
(D8h)	$0 \dots 60\Omega$	0 27648	Nennbereich
			Untersteuerung
3-Leiter: 0 600Ω	705,5Ω	32511	Übersteuerung
(D9h)	$0 \dots 600\Omega$	0 27648	Nennbereich
			Untersteuerung
3-Leiter: 0 3000Ω	3528Ω	32511	Übersteuerung
(DAh)	$0 \dots 3000\Omega$	0 27648	Nennbereich
			Untersteuerung
4-Leiter: 0 60Ω (E0h)	$70,55\Omega$	32511	Übersteuerung
	$0 \dots 60\Omega$	0 27648	Nennbereich
			Untersteuerung
4-Leiter: 0 600Ω	705,5Ω	32511	Übersteuerung
(E1h)	$0 \dots 600\Omega$	0 27648	Nennbereich
			Untersteuerung
4-Leiter: 0 3000Ω	3528Ω	32511	Übersteuerung
(E2h)	$0 \dots 3000\Omega$	0 27648	Nennbereich
			Untersteuerung

3.26.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Messbereichsüberschreitung
- Messbereichsunterschreitung
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

031-1LD80 - AI 4x16Bit R/RTD > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	■ Bit 3 0: Modulklasse – 0101b Analogbaugruppe
	Bit 4: Kanalinformation vorhandenBit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0		
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert 		

031-1LD80 - AI 4x16Bit R/RTD > Diagnosedaten

CHTYP Kanaltyp

Byte	Bit 7 0		
0	 ■ Bit 6 0: Kanaltyp - 70h: Digitaleingabe - 71h: Analogeingabe - 72h: Digitalausgabe - 73h: Analogausgabe - 74h: Analogeingabe/-ausgabe - 76h: Zähler ■ Bit 7: reserviert 		

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	■ Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler
	■ Bit 3 1: reserviert
	■ Bit 4: gesetzt bei Drahtbruch
	■ Bit 5: reserviert
	■ Bit 6: gesetzt bei Messbereichsunterschreitung
	■ Bit 7: gesetzt bei Messbereichsüberschreitung

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

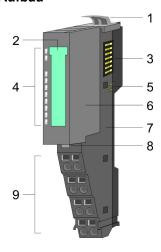
μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

031-1PAxx - Al1x 3Ph 230/400V

3.27 031-1PAxx - Al1x 3Ph 230/400V

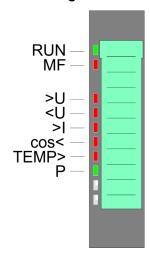
Eigenschaften


Folgende Module stehen zur Verfügung:

- 031-1PA00: Al1x 3Ph 230/400V 1A
- 031-1PA10: Al1x 3Ph 230/400V 5A

Die Module ermöglichen die Messung elektrischer Daten zur Energiezählung und Leistungsmessung. Hierbei erfolgt die Spannungsmessung der einzelnen Phasen direkt (oder indirekt über Spannungswandler) und die Strommessung indirekt über Stromwandler. Eine Energiemessung kann bei Verwendung von 5A-Stromwandlern nur an Geräten im 3-Phasen-Betrieb durchgeführt werden. Bei Verwendung von 1A-Stromwandlern können die Messeingänge aus der gleichen Phase gespeist werden.

- Remanente Speicherung der Energiewerte
- Diagnosefunktion
- Auflösung Messwert 24Bit
- Folgende Messgrößen können im 4-Quadranten-Betrieb ermittelt werden:
 - Spannung, Strom
 - Elektrische Leistung
 - Elektrische Arbeit
 - Harmonische Oberwellen
 - Phasenverschiebung cos φ
 - Frequenz


Aufbau

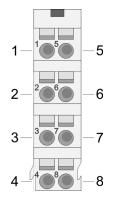
- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

031-1PAxx - Al1x 3Ph 230/400V

Statusanzeige

LED		Beschreibung
RUN	grün	Bus-Kommunikation ist OK
KON		aus: Fehler Busversorgungsspannung
	rot	Modul-Status meldet Fehler
	TOL	Bus-Kommunikation nicht möglich
MF		aus: Modul-Status ist OK
	r ot	Blinkt: Konfigurationsfehler
	2Hz	
>U		Spannung im parametrierten Bereich
- 0	rot	Spannung Grenzwert überschritten
		Spannung im parametrierten Bereich
<u< td=""><td rowspan="2">rot</td><td>Spannung Grenzwert unterschritten</td></u<>	rot	Spannung Grenzwert unterschritten
		(entfällt im 1-Phasenbetrieb)
>l		Strom im parametrierten Bereich
~1	rot	Strom Grenzwert überschritten
		Phasenverschiebung cos $\boldsymbol{\phi}$ im parametrierten Bereich
cos<	rot	Phasenverschiebung cos ϕ Grenzwert unterschritten
		(entfällt im 1-Phasenbetrieb)
TEMP>		Temperatur im parametrierten Bereich
I LIVII >	rot	Temperatur Grenzwert überschritten
		P: Leistungsproportionale
Р	grün	blinkt mit steigender Frequenz proportional zur Wirkleistung mit 20 Impulsen/Wh. Der Wandlerfaktor wird nicht berücksichtigt.

Bei einer Grenzwertüberschreitung leuchtet die entsprechende LED. Nach der Quittierung der "Status Bits" erlischt die entsprechende LED wieder.


031-1PA10 🔖 "Status Bits" Seite 329

031-1PA00 🕏 "Status Bits" Seite 333

031-1PAxx - Al1x 3Ph 230/400V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm². Die Messung von Strom bzw. Spannung erfolgt indirekt über Strom- bzw. Spannungswandler. *∜ Kap. 3.27.4 "Anschluss" Seite 318*

Pos.	Funktion	Тур	Beschreibung
1	L1	E	Spannungsmessung L1
2	L2	E	Spannungsmessung L2
3	L3	E	Spannungsmessung L3
4	N	E	Spannungsmessung N
5	I _{L1}	E	Strommessung I _{L1}
6	I _{L2}	E	Strommessung I _{L2}
7	I_{L3}	Е	Strommessung I _{L3}
8	I _N	Е	Strommessung I _N
E. Einga	na		

E: Eingang

GEFAHR!

Bitte Sicherheitshinweise beachten!

Mit den Energiemess-Modulen können ausschließlich Wechselspannungen 230/400V und Ströme gemessen werden. Bitte beachten Sie im Umgang mit einem Energiemess-Modul die Sicherheitshinweise! *Kap. 3.27.2 "Sicherheitshinweise" Seite 312*

Ein-/Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ein- bzw. Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index f
 ür Zugriff über CANopen mit s = Subindex, abh
 ängig von Anzahl und Typ der Analogmodule
- SX Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Eingabebereich

Adr.	Name	Byte	Funktion	IX	SX
+0	B0 B3	4	Header-Byte 0 3	6401h/s	01h
+4	D00 D11	12	Nutzdaten Eingabe Byte 0 11	6401h/s+1	02h

Ausgabebereich

Adr.	Name	Byte	Funktion	IX	SX
+0	B0 B3	4	Header-Byte 0 3	6401h/s	01h
+4	D00 D11	12	Nutzdaten Ausgabe Byte 0 11	6401h/s+1	02h

⋄ Kap. 3.27.7 "Prozessdatenkommunikation" Seite 334

031-1PAxx - Al1x 3Ph 230/400V > Technische Daten

3.27.1 Technische Daten

3.27.1.1 031-1PA10

Artikelnr.	031-1PA10
Bezeichnung	SM 031
Modulkennung	0884 2880
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	60 mA
Verlustleistung	0,9 W
Lastnennspannung	-
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	ja, parametrierbar
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja, parametrierbar
Diagnoseinformation auslesbar	möglich
Modulstatus	grüne LED
Modulfehleranzeige	rote LED
Kanalfehleranzeige	-
Potenzialtrennung	
zwischen den Kanälen	-
Isolierung geprüft mit	AC 2200 V
Energiemessung	
Anzahl der Kanäle zur Energiemessung	1* 13 Phasen U/I
Messbereich Spannung	0300 V je Phase
Ankopplung Spannungsmessung	direkt oder Messwandler
Messbereich Strom	05 A je Phase
Ankopplung Strommessung	Messwandler
Frequenzbereich	4664 Hz
Messgenauigkeit	1 %

031-1PAxx - Al1x 3Ph 230/400V > Technische Daten

Artikelnr.	031-1PA10
Verfügbare Messwerte	Wirkenergie
	Temperatur
	Frequenz
	Spannung RMS
	Strom RMS
	Wirkleistung
	Blindleistung
	Scheinleistung Cos phi
	Harmonische Spannung RMS
	Harmonischer Strom RMS
Einstellbare Grenzwerte	Spannung RMS min/max
	Strom RMS min/max
	Cos phi min
	Temperatur max.
	Frequenz min/max
Datengrößen	
Eingangsbytes	16
Ausgangsbytes	16
Parameterbytes	30
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	57 g
Gewicht inklusive Zubehör	57 g
Gewicht Brutto	71 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	-
Zertifizierung nach KC	-

031-1PAxx - Al1x 3Ph 230/400V > Technische Daten

Die Messgenauigkeit von $\pm 1~\%$ wird eingehalten für:

Messgröße	Messbereich
Spannung	$230~V\pm15\%$
Strom	Strom am Messeingang (I _{L1L3} - I _N) 0 5A
Cos φ	Strom am Messeingang (I_{L1L3} - I_N) \geq 100mA
Leistungswerte	Strom am Messeingang (I_{L1L3} - I_N) $\geq 2mA$
Energiewerte	Strom am Messeingang (I_{L1L3} - I_N) $\geq 2mA$

031-1PAxx - Al1x 3Ph 230/400V > Technische Daten

3.27.1.2 031-1PA00

Bezeichnung SM 031 Modulkennung 0882 2880 StromaufnahmerVerlustleistung 60 mA Stromaufnahme aus Rückwandbus 60 mA Verlustleistung 0,9 W Lastnenspannung - Status, Alarm, Diagnosen statusanzeige Statusanzeige ja, parametrierbar Prozessalarm nein Diagnosealarm nein Diagnosefunktion ja, parametrierbar Diagnosefunktion ja, parametrierbar Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED Kanalfehleranzeige rote LED Kanalfehleranzeige - Potenzialtrennung - zwischen den Kanälen - Isolierung geprüft mit AC 2200 V Energiemessung 1* 13 Phasen U/I Messbereich Spannung 0300 V je Phase Ankopplung Spannungsmessung direkt Messbereich Strom 01 A je Phase Ankopplung Strommessung Messwandler	Artikelnr.	031-1PA00
Stromaufnahme/Verlustleistung60 mAVerlustleistung0,9 WLastnennspannung-Status, Alarm, DiagnosenJaStatusanzeigejaAlarmeja, parametrierbarProzessalarmneinDiagnosealarmsneinDiagnosefunktionja, parametrierbarDiagnoseinformation auslesbarmöglichModulstatusgrüne LEDModulfehleranzeigerote LEDKanalfehleranzeige-Potenzialtrennung-zwischen den Kanälen-Isolierung geprüft mitAC 2200 VEnergiemessung1* 13 Phasen U/IMessbereich Spannung0300 V je PhaseAnkopplung SpannungsmessungdirektMessbereich Strom01 A je PhaseAnkopplung StrommessungMesswandlerFrequenzbereich4664 Hz	Bezeichnung	SM 031
Stromaufnahme aus Rückwandbus Verlustleistung Lastnennspannung Status, Alarm, Diagnosen Statusanzeige Alarme Prozessalarm Diagnosealarm Diagnosefunktion Diagnoseinformation auslesbar Modulfehleranzeige Kanalfehleranzeige Vertenzialtrennung zwischen den Kanälen Isolierung geprüft mit Energiemessung Anzahl der Kanale zur Energiemessung Ankopplung Spannungsmessung Messwandler Ankopplung Strommessung Messwandler Frequenzbereich Messwandler Frequenzbereich Messwandler Messwandler Frequenzbereich Messwandler Messwandler Frequenzbereich Messwandler Messwandler Messwandler Messwandler Frequenzbereich Modulfed Message Ance 200 V Messwandler Messwandler Messwandler Frequenzbereich Messwandler Frequenzbereich	Modulkennung	0882 2880
Verlustleistung 0,9 W Lastnennspannung - Status, Alarm, Diagnosen Statusanzeige ja Alarme ja, parametrierbar Prozessalarm nein Diagnosealarm nein Diagnosefunktion ja, parametrierbar Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED Kanalfehleranzeige - Potenzialtrennung zwischen den Kanälen - Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung Ansphungsmessung Ankopplung Spannungsmessung Messwandler Frequenzbereich 4664 Hz	Stromaufnahme/Verlustleistung	
Lastnennspannung Status, Alarm, Diagnosen Statusanzeige ja Alarme ja, parametrierbar Prozessalarm nein Diagnosealarm nein Diagnosefunktion ja, parametrierbar Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED Kanalfehleranzeige Potenzialtrennung zwischen den Kanälen Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung Ankopplung Spannungsmessung Messbereich Strom Ankopplung Strommessung Messwandler Frequenzbereich Messbereich Messbereich Messwandler Frequenzbereich Messwandler Frequenzbereich	Stromaufnahme aus Rückwandbus	60 mA
Status, Alarm, DiagnosenStatusanzeigejaAlarmeja, parametrierbarProzessalarmneinDiagnosealarmneinDiagnosefunktionja, parametrierbarDiagnoseinformation auslesbarmöglichModulstatusgrüne LEDModulfehleranzeigerote LEDKanalfehleranzeige-Potenzialtrennungzwischen den KanälenIsolierung geprüft mitAC 2200 VEnergiemessung1* 13 Phasen U/IMessbereich Spannung0300 V je PhaseAnkopplung SpannungsmessungdirektMessbereich Strom01 A je PhaseAnkopplung StrommessungMesswandlerFrequenzbereich4664 Hz	Verlustleistung	0,9 W
Statusanzeige ja Alarme ja, parametrierbar Prozessalarm nein Diagnosealarm nein Diagnosefunktion ja, parametrierbar Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED Kanalfehleranzeige Potenzialtrennung zwischen den Kanälen Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung Ankopplung Spannungsmessung Messbereich Strom Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Lastnennspannung	-
Alarme ja, parametrierbar Prozessalarm nein Diagnosealarm nein Diagnosefunktion ja, parametrierbar Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED Kanalfehleranzeige - Potenzialtrennung zwischen den Kanälen - Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung Ankopplung Spannungsmessung direkt Messbereich Strom Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Status, Alarm, Diagnosen	
Prozessalarm Diagnosealarm Diagnosefunktion Diagnoseinformation auslesbar Modulstatus Modulfehleranzeige Ranalfehleranzeige Fotenzialtrennung zwischen den Kanälen Isolierung geprüft mit Acc 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung Ankopplung Spannungsmessung Ankopplung Strommessung	Statusanzeige	ja
Diagnosealarm Diagnosefunktion Diagnoseinformation auslesbar Modulstatus Modulstatus Modulfehleranzeige Ranalfehleranzeige Fotenzialtrennung zwischen den Kanälen Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung Ankopplung Spannungsmessung Messbereich Strom Ankopplung Strommessung Ankopplung Strommessung Ankopplung Strommessung Messwandler Frequenzbereich Ankopplung Strommessung Messwandler Frequenzbereich Ankopplung Strommessung Messwandler Frequenzbereich Ankopplung Strommessung Messwandler Frequenzbereich	Alarme	ja, parametrierbar
Diagnosefunktion ja, parametrierbar Diagnoseinformation auslesbar möglich Modulstatus grüne LED Modulfehleranzeige rote LED Kanalfehleranzeige Potenzialtrennung zwischen den Kanälen Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung Ankopplung Spannungsmessung direkt Messbereich Strom 01 A je Phase Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Prozessalarm	nein
Diagnoseinformation auslesbar Modulstatus grüne LED Modulfehleranzeige rote LED Kanalfehleranzeige Potenzialtrennung zwischen den Kanälen lsolierung geprüft mit Energiemessung Anzahl der Kanäle zur Energiemessung Ankopplung Spannungsmessung Ankopplung Strommessung Ankopplung Strommessung Messwandler Frequenzbereich Messwandler ### Modulstatus grüne LED **Common LED **	Diagnosealarm	nein
Modulstatus grüne LED Modulfehleranzeige rote LED Kanalfehleranzeige - Potenzialtrennung zwischen den Kanälen - Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung 0300 V je Phase Ankopplung Spannungsmessung direkt Messbereich Strom 01 A je Phase Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Diagnosefunktion	ja, parametrierbar
Modulfehleranzeige Kanalfehleranzeige Potenzialtrennung zwischen den Kanälen Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung Anzahl der Kanäle zur Energiemessung Ankopplung Spannungsmessung Messbereich Strom Ankopplung Strommessung Ankopplung Strommessung Messwandler Frequenzbereich 7 tel LED AC 2200 V 4 cel 22	Diagnoseinformation auslesbar	möglich
Kanalfehleranzeige - Potenzialtrennung zwischen den Kanälen - Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung 0300 V je Phase Ankopplung Spannungsmessung direkt Messbereich Strom 01 A je Phase Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Modulstatus	grüne LED
Potenzialtrennung zwischen den Kanälen - Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung 0300 V je Phase Ankopplung Spannungsmessung direkt Messbereich Strom 01 A je Phase Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Modulfehleranzeige	rote LED
zwischen den Kanälen Isolierung geprüft mit AC 2200 V Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung 0300 V je Phase Ankopplung Spannungsmessung direkt Messbereich Strom 01 A je Phase Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Kanalfehleranzeige	-
Isolierung geprüft mit Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung 0300 V je Phase Ankopplung Spannungsmessung direkt Messbereich Strom 01 A je Phase Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Potenzialtrennung	
Energiemessung Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung 0300 V je Phase Ankopplung Spannungsmessung direkt Messbereich Strom 01 A je Phase Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	zwischen den Kanälen	-
Anzahl der Kanäle zur Energiemessung 1* 13 Phasen U/I Messbereich Spannung 0300 V je Phase Ankopplung Spannungsmessung direkt Messbereich Strom 01 A je Phase Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Isolierung geprüft mit	AC 2200 V
Messbereich Spannung O300 V je Phase Ankopplung Spannungsmessung direkt Messbereich Strom O1 A je Phase Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Energiemessung	
Ankopplung Spannungsmessung direkt Messbereich Strom 01 A je Phase Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Anzahl der Kanäle zur Energiemessung	1* 13 Phasen U/I
Messbereich Strom01 A je PhaseAnkopplung StrommessungMesswandlerFrequenzbereich4664 Hz	Messbereich Spannung	0300 V je Phase
Ankopplung Strommessung Messwandler Frequenzbereich 4664 Hz	Ankopplung Spannungsmessung	direkt
Frequenzbereich 4664 Hz	Messbereich Strom	01 A je Phase
•	Ankopplung Strommessung	Messwandler
Messgenauigkeit 1 %	Frequenzbereich	4664 Hz
	Messgenauigkeit	1 %

031-1PAxx - Al1x 3Ph 230/400V > Technische Daten

Artikelnr.	031-1PA00
Verfügbare Messwerte	Wirkenergie
	Temperatur
	Frequenz
	Spannung RMS
	Strom RMS
	Wirkleistung
	Blindleistung
	Scheinleistung Cos phi
	Harmonische Spannung RMS
	Harmonischer Strom RMS
Einstellbare Grenzwerte	Spannung RMS min/max
Zoto.ibaro Oronzworto	Strom RMS min/max
	Cos phi min
	Temperatur max.
	Frequenz min/max
Datengrößen	
Eingangsbytes	16
Ausgangsbytes	16
Parameterbytes	28
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	57 g
Gewicht inklusive Zubehör	57 g
Gewicht Brutto	71 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	-
Zertifizierung nach KC	-

031-1PAxx - Al1x 3Ph 230/400V > Sicherheitshinweise

Die Messgenauigkeit von ±1 % wird eingehalten für:

Messgröße	Messbereich
Spannung	$230~V\pm15\%$
Strom	Strom am Messeingang (I _{L1L3} - I _N) 0 1A
Cos φ	Strom am Messeingang (I_{L1L3} - I_N) \geq 100mA
Leistungswerte	Strom am Messeingang (I_{L1L3} - I_N) \geq 2mA
Energiewerte	Strom am Messeingang (I_{L1L3} - I_N) $\geq 2mA$

3.27.2 Sicherheitshinweise

Bitte beachten!

Mit den Energiemess-Modulen können ausschließlich Wechselspannungen 230/400V und Ströme gemessen werden. Bitte beachten Sie im Umgang mit einem Energiemess-Modul folgende Sicherheitshinweise:

GEFAHR!

Kein Einsatz in Ex-Zone zulässig!

Das Modul ist nicht zugelassen für den Einsatz in explosionsgefährdeten Umgebungen (EX-Zone)!

GEFAHR!

Phasen- und Neutralleiter-Anschlüsse nicht vertauschen!

Ein Betrieb des Energiemess-Moduls mit Phase (L1, L2 oder L3) an "N" (Pin 4) ist nicht erlaubt!

GEFAHR!

Anschluss und Modultausch nur spannungslos!

- Das Modul ist vor dem Beginn von Installations- und Instandhaltungsarbeiten unbedingt freizuschalten, d.h. die Spannungszuführung ist stromlos zu schalten (evtl. die zugehörige Sicherung abschalten)!
- Das Elektronik-Modul darf nur im spannungslosen Zustand getauscht werden!
- Anschluss und Änderungen dürfen nur durch ausgebildetes Elektro-Fachpersonal ausgeführt werden!
- Bitte beachten Sie die nationalen Vorschriften und Richtlinien im jeweiligen Verwenderland (Installation, Schutzmaßnahmen, EMV ...).

GEFAHR!

Überspannungsschutz vorsehen!

Das Modul ist für Überspannungskategorie II ausgelegt. Sorgen Sie für einen entsprechenden Überspannungsschutz in den Zuleitungen (Phasen und Nullleiter) damit eine Gefährdung von Personen durch Berührung auf der Niederspannungsseite ausgeschlossen ist.

031-1PAxx - Al1x 3Ph 230/400V > Sicherheitshinweise

GEFAHR!

Berührungsschutz vorsehen!

Führen Sie die gesamte Verdrahtung des Messaufbaus einschließlich der Messwandler berührungsgeschützt aus und versehen Sie den Aufbau mit den entsprechenden Warnhinweisen!

GEFAHR!

Kein Einsatz mit System SLIO Safety Modulen!

Der gleichzeitige Einsatz von Energiemess-Modulen und System SLIO Safety Modulen am Rückwandbus ist nicht zulässig!

GEFAHR!

Einsatz nur mit Terminal-Modul 001-0AA40!

Bitte beachten Sie, dass das Elektronik-Modul der Energiemess-Module ausschließlich mit dem Terminal-Modul 001-0AA40 betrieben werden darf!

GEFAHR!

Leiterspannung max. 400V!

Die Leiterspannung an einem Spannungsanschluss darf maximal 400V betragen!

GEFAHR!

Alle Phasen aus einem Versorgungsnetz!

Bitte beachten Sie, dass die zu messenden Phasen sich im gleichen Versorgungsnetz befinden müssen!

VORSICHT!

Strom- und Spannungsanschlüsse nicht vertauschen!

Bitte beachten Sie beim Anschluss, dass Strom- und Spannungspfade nicht vertauscht werden! Durch den direkten Anschluss einer Phase an einen niederohmigen Stromanschluss wird das Modul zerstört!

VORSICHT!

Maximalen Strom für Stromwandler beachten!

Je nach eingesetztem Energiemess-Modul sind folgende maximale Stromgrenzen für Stromwandler zu beachten:

- 031-1PA00: max. 1A
- 031-1PA10: max. 5A

Bitte beachten Sie auch das Datenblatt zu Ihrem Stromwandler!

031-1PAxx - Al1x 3Ph 230/400V > Sicherheitshinweise

VORSICHT!

Eigenschaften der Stromwandler beachten!

- Bitte beachten Sie das Datenblatt zu Ihrem Stromwandler!
- Manche Stromwandler dürfen Sie nicht im Leerlauf betreiben!
- Vor der Inbetriebnahme muss Ihr Modul an die Sekundärwicklung des Stromwandlers angeschlossen sein!

VORSICHT!

Eigenschaften der Spannungswandler beachten!

- Bitte beachten Sie, dass der Einsatz eines Spannungswandlers ausschließlich vom Energiemess-Modul 031-1PA10 unterstützt wird!
- Bitte beachten Sie das Datenblatt und die Sicherheitshinweise zu Ihrem Spannungswandler!

Unterbrechung der DC 24V Leistungsversorgung!

Beim Einsatz der Energiemess-Module wird am weiterführenden Rückwandbus die DC 24V Leistungsversorgung unterbrochen. Durch Einsatz eines Power-Moduls nach einem Energiemess-Modul können Sie die DC 24V Leistungsversorgung am Rückwandbus wieder fortsetzen.

Nach Installation Energiezähler rücksetzen!

Sobald das Modul über die DC 24V Leistungsversorgung versorgt wird, beginnt die Messwerterfassung und der Zählvorgang der Energiezähler wird mit den remanent gespeicherten Zählerständen fortgesetzt. Die Messung wird durch STOP bzw. RESET Ihrer CPU bzw. Ihres Bus-Kopplers nicht unterbrochen. Nach der Installation des Moduls sollten Sie mit dem CMD-Frame alle Wirkenergiezähler zurücksetzen.

Kap. 3.27.7.4.5 "CMD Frame" Seite 342

- Solange nach dem Aus- und wieder Einschalten keine Parameter von der Kopfstation an das Modul gesendet wurden, werden bei einem Lesezugriff vom Modul Defaultwerte übermittelt und nicht die im Modul gespeicherten Parameter.
- Nach dem Übertragen der Parameter auf das Modul werden alle Statusbits zurückgesetzt und die Messung wird für eine kurze Zeit unterbrochen!
- Bitte beachten Sie, sobald mindestens eine Phase deaktiviert ist, werden die Parameter PF_MIN und VRMS_MIN ignoriert und auf "0" gesetzt.

031-1PAxx - Al1x 3Ph 230/400V > Grundlagen

3.27.3 Grundlagen

3.27.3.1 Begriffe

Messgröße

Eine *Messgröße* ist eine physikalische Größe, die zu messen ist, z.B. Strom, Spannung oder Temperatur.

∜ Kap. 3.27.6.2 "Messgrößen - 031-1PA00" Seite 329

Messwert

Ein *Messwert* ist ein Wert einer Messgröße, der durch Messung oder durch Berechnung ermittelt wird.

ID

Im Modul ist jeder *Messgröße* eine *ID* zugeordnet. Der Zugriff auf den Messwert einer Messgröße erfolgt durch Angabe der entsprechenden *ID*.

DS-ID

Sobald das Modul über die DC 24V Leistungsversorgung versorgt wird, beginnt die Messwerterfassung und der Zählvorgang der Energiezähler wird mit den remanent gespeicherten Zählerständen fortgesetzt. Die Messwerte aller Messgrößen werden unter einer Datensatz-ID *DS-ID* im Modul gespeichert. Hierbei ist folgendes zu beachten:

- Alle Messwerte mit der gleichen DS-ID stammen aus der gleichen Messung und sind konsistent.
- Durch Angabe der DS-ID können Sie die einzelnen Messwerte aus der gleichen Messung adressieren.
- Die DS-ID umfasst die Werte 1 ... 15.
- Zur Aktualisierung der Messwerte ist die DS-ID um 1 zu inkrementieren. Nach dem Wert 15 muss wieder die 1 folgen.
- Wird die *DS-ID* inkrementiert und es liegt noch kein neuer Wert vor, wird der aktuelle Wert geliefert. Hierbei meldet das Energiemess-Modul einen Fehler. *∜ Kap.* 3.27.7.2 "Status Kommunikation" Seite 335
- DS-ID = 0 Autoinkrement-Modus
 - Mit DS-ID = 0 erfolgt eine Anfrage im Autoinkrement-Modus. Hierbei liefert das Modul immer den aktuellsten Messwert zurück. Sobald hier ein neuer Messwert vorhanden ist, wird die DS-ID innerhalb der Werte 1 ... 15 um 1 inkrementiert. Sollte noch kein neuer Messwert vorliegen, bleibt die DS-ID unverändert. Hierbei meldet das Energiemess-Modul einen Fehler.

 Kap. 3.27.7.2 "Status Kommunikation" Seite 335
- Die Eindeutigkeit eines Messwerts besteht immer aus der ID der Messgröße und der DS-ID.

Frame

Im Modul können Sie mehrere Messgrößen zu einem Datenpaket (Frame) zusammenfassen, welches in einem Durchgang übertragen wird. Ein Datenpaket umfasst 12Byte Nutzdaten. Unter Berücksichtigung der Nutzdatenlänge von 12Byte können Sie durch Angabe der Messgrößen-*ID* die Inhalte eines Frames definieren. Sie können bis zu 256 Frames (*Frame 0 ... Frame 255*) konfigurieren. Hierbei ist folgendes zu beachten:

- Die Definition von Frame 1 bis Frame 255 erfolgt mit dem Befehl Set_Frame. ♦ Kap. 3.27.7.4.3 "Set Frame" Seite 338.

031-1PAxx - Al1x 3Ph 230/400V > Grundlagen

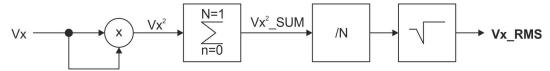
FR-ID

Bei der Definition von Frames mittels "Set Frame" werden diese über die FR-ID mit einer beliebigen Ziffer aus 0 ... 255 versehen. Durch Angabe der FR-ID können Sie das entsprechende Frame anfordern.

Datentyp

Nachfolgend sind die Datentypen aufgeführt, welche im Modul verwendet werden. Die Länge ist insbesondere bei der Definition von *Frames* zu berücksichtigen.

Datentyp	Länge in Byte	Beschreibung
UINT_8	1	Ganzzahl 8Bit
UINT_16	2	Ganzzahl 16Bit
UINT_32	4	Ganzzahl 32Bit
INT_8	1	Vorzeichenbehaftete Ganzzahl 8Bit
INT_16	2	Vorzeichenbehaftete Ganzzahl 16Bit
INT_32	4	Vorzeichenbehaftete Ganzzahl 32Bit
FLOAT	4	32Bit Gleitkommazahl nach IEEE 754


3.27.3.2 Messprinzip

Berechnung der Effektivwerte für Strom und Spannung

- Bei einem 3phasigen Drehstrom-Niederspannungsnetz entspricht die Nennspannung der Effektivspannung U_{RMS} z.B. 230V_{RMS} als Sternspannung zwischen einem der 3 Außenleiter (L1, L2 oder L3) und dem Neutralleiter N.
- Das Modul dient zur Erfassung der Strom- und Spannungsgrößen sowie der Energiewerte aller 3 Phasen. Hierbei misst das Modul den echten Effektivwert (True RMS) der Spannungen und Ströme.
- Die Abtastrate der digital verarbeiteten Messwerte beträgt 2,7kHz. Das Zeitintervall für die Berechnung der Aktualwerte beträgt 200ms. Hieraus ergibt sich ein Auswertefenster der Messdaten von 540 Messwerten, welche Sie jederzeit abrufen können.

Spannungsmessung

Mittelwertbildung

- **1.** Das Quadrat der aktuell gemessenen Spannung Vx wird berechnet.
 - $\Rightarrow Vx^2$
- **2.** Die Summe von Vx^2 wird über das Zeitintervall $n = 0 \dots n = N-1$ berechnet.
 - $\Rightarrow Vx^2 SUM$
- **3.** Vx^2 SUM wird durch die Anzahl der Messungen N dividiert.
- **4.** Aus dem Ergebnis der Division wird die Quadratwurzel gezogen.
 - ⇒ Mittelwert Vx RMS

Strommessung

Zur Strommessung sind immer externe Stromwandler einzusetzen!

031-1PAxx - Al1x 3Ph 230/400V > Grundlagen

VORSICHT!

Maximalen Strom für Stromwandler beachten!

Je nach eingesetztem Energiemess-Modul sind folgende maximale Stromgrenzen für Stromwandler zu beachten:

031-1PA00: max. 1A031-1PA10: max. 5A

Bitte beachten Sie auch das Datenblatt zu Ihrem Stromwandler!

VORSICHT!

Eigenschaften der Stromwandler beachten!

- Bitte beachten Sie das Datenblatt zu Ihrem Stromwandler!
- Manche Stromwandler dürfen Sie nicht im Leerlauf betreiben!
- Vor der Inbetriebnahme muss Ihr Modul an die Sekundärwicklung des Stromwandlers angeschlossen sein!

- Bitte beachten Sie, dass die Gesamtgenauigkeit des Aufbaus aus Mess-Modul und Stromwandlern von der Genauigkeitsklasse der Wandler abhängt.
- Der Wandlerfaktor wird remanent gespeichert und bei der Zählung berücksichtigt.
- Eine Änderung des Wandlerfaktors wird sofort berücksichtigt. Aktuelle Zählerstände werden nicht verändert, neue Werte werden addiert.
- Bei Änderung des Wandlerfaktors wird der Zählerstand nicht verändert; neue Werte werden unter Berücksichtigung des neuen Faktors addiert.

Berechnung Leistung, Energie

Für die Berechnung der Wirkleistungen P werden die einzelnen zeitlich synchronen Abtastwerte der Ströme und Spannungen verwendet. Hierbei werden Phasenverschiebungen zwischen den Strömen und Spannungen berücksichtigt. Die Energie wird aus der zeitlichen Integration der Leistung berechnet.

Für die Leistung gilt:

- Positives Vorzeichen (+): Verbrauchte bzw. bezogene Leistung
 - Negatives Vorzeichen (-): Eingespeiste Leistung

Ermittlung Frequenz

Die *Frequenz* der Phasen wird durch eine Nulldurchgangserkennung der abgetasteten Signale ermittelt und hieraus die Frequenz berechnet.

Scheinleistung

$$S = U \times I$$

Die Scheinleistung S berechnet sich aus dem Produkt von Effektivstrom I_{eff} und Effektivspannung U_{eff} . Mit der Scheinleistung erhalten Sie die gesamte Leistung eines Übertragungsnetzes.

Blindleistung

$$Q = U \times I \times \sin \varphi$$

Bei angelegter Wechselspannung erzeugt jedes elektrische Gerät ein elektromagnetisches Feld. Durch die Wechselspannung wird das magnetische Feld regelmäßig auf- und abgebaut. Weil die Leistung zum Aufbau eines Feldes bei dessen Abbau wieder ans Netz

031-1PAxx - Al1x 3Ph 230/400V > Anschluss

zurückgegeben wird, bezeichnet man diese Leistung als "Blindleistung". Blindleistung pendelt zwischen Verbraucher und Erzeuger hin und her und belastet die Stromnetze. Sie ist das Produkt aus Strom und Spannung an einem Blindwiderstand (Reaktanz). Als Blindwiderstände wirken alle Arten von Spulen und Kondensatoren. Werden diese an eine Wechselspannung angeschlossen, so können sie Energien aufnehmen und diese phasenverschoben wieder als Blindleistung abgeben. Die Blindleistung kommt durch die Phasenverschiebung zwischen Strom und Spannung der Induktivität bzw. der Kapazität zustande. Bei einem rein ohmschen Widerstand liegen Strom und Spannung in gleicher Phase, daher hat ein rein ohmscher Widerstand keinen Blindanteil.

Die angegebene Formel Q = $U \times I \times \sin \varphi$ gilt nur für rein sinusförmige Ströme.

Wirkleistung

 $P = U \times I \times \cos \varphi$

Die *Wirkleistung P* ist die effektiv genutzte Leistung. Sie ist der Anteil ohne Phasenverschiebung zwischen Spannung und Strom und bezieht sich auf eine ohmsche Last.

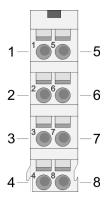
Leistungsfaktor cos φ (phi) Berechnung

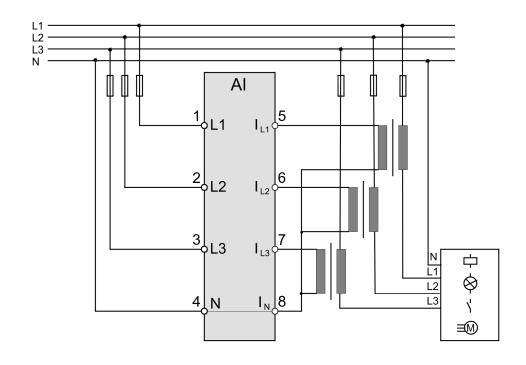
In realen Netzen sind Energie-Verbraucher/-Erzeuger typischerweise nicht rein ohmsch. Es kommt zu einer Phasenverschiebung zwischen Strom und Spannung. Der $\cos \varphi$ ist ein Maß der Phasenverschiebung zwischen Strom und Spannung der Grundschwingung der jeweiligen Phase. Der Gesamt $\cos \varphi$ errechnet sich aus der Division von Gesamt wirk-leistung P und Gesamt S.

Harmonische Oberwellen

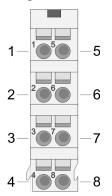
Oberwellen sind Schwingungen der Spannungen und Ströme, deren Frequenz ein ganzzahliges Vielfaches der Grundfrequenz ist. Die 1. Oberwelle ist die Grundschwingung oder Netzfrequenz, nominell 50Hz bzw. 60Hz. Die Höhe der Oberwellen ist ein Maß für die Netzqualität. Oberwellen oder Oberschwingungen entstehen durch Betriebsmittel mit nichtlinearer Kennlinie wie etwa Transformatoren, Leuchtstofflampen sowie leistungselektronische Betriebsmittel wie z.B. Gleichrichter und Thyristoren. Die nicht sinusförmigen Ströme dieser Verbraucher verursachen im Netz Störspannungen welche die Netznenspannung verzerrt. In der Parametrierung können Sie die Nummer der harmonischen Vorgeben. Mit dieser Frequenz werden die *"harmonischen"* Strom- und Spannungswerte gefiltert.

3.27.4 Anschluss

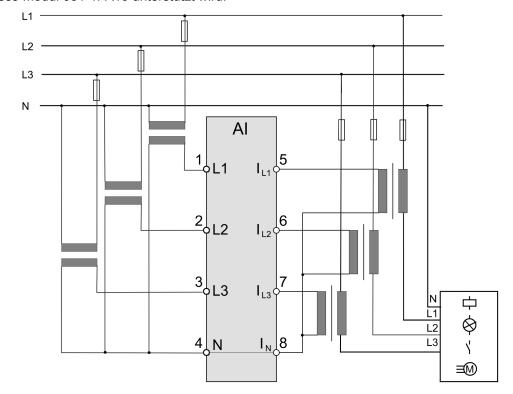

GEFAHR!


Bitte Sicherheitshinweise beachten!

Mit den Energiemess-Modulen können ausschließlich Wechselspannungen 230/400V und Ströme gemessen werden. Bitte beachten Sie im Umgang mit einem Energiemess-Modul die Sicherheitshinweise! *∜ Kap.* 3.27.2 "Sicherheitshinweise" Seite 312


031-1PAxx - Al1x 3Ph 230/400V > Anschluss

Anschluss über Stromwandler



Anschluss über Strom-/ Spannungswandler

Bitte beachten Sie, dass der Einsatz eines Spannungswandlers ausschließlich vom Energiemess-Modul 031-1PA10 unterstützt wird!

031-1PAxx - Al1x 3Ph 230/400V > Parametrierdaten

3.27.5 Parametrierdaten

3.27.5.1 Parameter - 031-1PA10

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

IDx	Name	Datentyp	Beschreibung	Default (dez.)	DS	IX	SX
1	CFG	UINT_8	Wahl der Phasen und der Datenformate	0	80h	3100h	01h
2	F0V1	UINT_8	Frame 0: Wert 1 (IDx)	1	81h	3101h	02h
3	F0V2	UINT_8	Frame 0: Wert 2 (IDx)	9		3102h	03h
4	F0V3	UINT_8	Frame 0: Wert 3 (IDx)	13		3103h	04h
5	F0V4	UINT_8	Frame 0: Wert 4 (IDx)	12		3104h	05h
6	F0V5	UINT_8	Frame 0: Wert 5 (IDx)	0		3105h	06h
102	IRMS_MAX ¹	UINT_32	Strom Obergrenze [mA] Wertebereich: 0 25000000	01	82h	3106h 3109h	07h
104	VRMS_MAX	UINT_16	Spannung Obergrenze [V] Wertebereich: 0 30000	260	83h	310Ah 310Bh	08h
105	VRMS_MIN	UINT_16	Spannung Untergrenze [V] Wertebereich: 0 30000	200		310Ch 310Dh	09h
106	PF_MIN	UINT_8	Cos φ Untergrenze [0,01] Wertebereich: 0 100	30	84h	310Eh	0Ah
107	T_MAX	UINT_16	Temperatur Obergrenze [0,01°C] Wertebereich: 0 20000	7000	85h	310Fh 3110h	0Bh
108	F_MAX	UINT_16	Frequenz Obergrenze [0,01 Hz] Wertebereich: 0 20000	5100		3111h 3112h	0Ch
109	F_MIN	UINT_16	Frequenz Untergrenze [0,01 Hz] Wertebereich: 0 20000	4900		3113h 3114h	0Dh
111	WANDLER_I	UINT_16	Stromwandlerfaktor Wertebereich: 1 5000	1		3115h 3116h	0Eh
112	WANDLER_U	UINT_16	Spannungswandlerfaktor Wertebereich: 1 300	1		3117h 3118h	0Fh
113	HARM	UINT_8	Nummer der harmonischen Oberwelle \$ "Harmonische Oberwellen" Seite 318 Wertebereich: 1 30	1	86h	3119h	10h

Die Parameter werden im Big-Endian-Format übertragen (Byte-Reihenfolge: High-Byte, Low-Byte).

¹⁾ Parameter ist anzupassen (Wert: > 0).

031-1PAxx - Al1x 3Ph 230/400V > Parametrierdaten

- Solange nach dem Aus- und wieder Einschalten keine Parameter von der Kopfstation an das Modul gesendet wurden, werden bei einem Lesezugriff vom Modul Defaultwerte übermittelt und nicht die im Modul gespeicherten Parameter.
- Nach dem Übertragen der Parameter auf das Modul werden alle Statusbits zurückgesetzt und die Messung wird für eine kurze Zeit unter-
- Bitte beachten Sie, sobald mindestens eine Phase deaktiviert ist, werden die Parameter PF_MIN und VRMS_MIN ignoriert und auf "0" gesetzt.
- Bei einem Fehler in der Parametrierung blinkt die MF-LED und Sie erhalten eine Fehlermeldung. \$\&\text{Kap. 3.27.7.2 "Status Kommunikation" Seite 335

Datentyp

♥ "Datentyp" Seite 316

CFG

Bit	Name	Beschreibung	Default			
0	reserviert		0			
1	Write Protect ¹	Schreibschutzbit für Parametrierung über Webserver 0: Schreibschutz deaktiviert 1: Schreibschutz aktiviert Bitte nachfolgenden Hinweis beachten!	11			
2	reserviert		0			
3	Phase 1	Messung Phase L1 ■ 0: Messung ist aktiviert ■ 1: Messung ist deaktiviert	0			
4	Phase 2	Messung Phase L2 ■ 0: Messung ist aktiviert ■ 1: Messung ist deaktiviert	0			
5	Phase 3	Messung Phase L3 ■ 0: Messung ist aktiviert ■ 1: Messung ist deaktiviert	0			
6	Data type	Datentyp der Messwerte in den Nutzdaten ■ 0: Ganzzahl (INT) ■ 1: 32Bit Gleitkommazahl (FLOAT) nach DIN IEEE 754	0			
7	Byteorder	Datenformat der Messwerte in den Nutzdaten □ 0: Big-Endian: Byte-Reihenfolge: High-Byte, Low-Byte □ 1: Little-Endian: Byte-Reihenfolge: Low-Byte, High-Byte	0			
1) Ein Zugriff auf den Parameter "Write Protect" ist nur über den Webserver des Kopfmoduls möglich (nicht über GSD oder GSDML).						

031-1PAxx - Al1x 3Ph 230/400V > Parametrierdaten

1) Write Protect

Der Parameter "Write Protect" ist nur relevant, wenn das Modul an einer Kopfstation mit integriertem Webserver betrieben wird. Soll das Modul über den Webserver parametriert werden, muss "Write Protect" auf "0" gesetzt werden, ansonsten werden die geänderten Parameter nicht übernommen!

F0V1 ... F0V5

Im Modul können Sie mehrere Messgrößen zu einem Datenpaket (Frame) zusammenfassen, welches in einem Durchgang übertragen wird. ∜ "Frame" Seite 315

Über F0V1 ... F0V5 können Sie durch Angabe der ID der entsprechenden Messgröße die Datenbereiche von Frame 0 definieren. Bitte beachten Sie, dass hierbei die Nutzdatenlänge von 12Byte nicht überschritten wird. *∜ Kap. 3.27.6.1 "Messgrößen - 031-1PA10"* Seite 325

■ Wertebereich: 0 ... 41

Default:

F0V1: 1 (Wirkenergie Verbraucher)

F0V2: 9 (Wirkleistung gesamt)

F0V3: 13 (cos φ gesamt)

F0V4: 0F0V5: 0

3.27.5.2 Parameter - 031-1PA00

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

IDx	Name	Datentyp	Beschreibung	Default (dez.)	DS	IX	SX
1	CFG	UINT_8	Wahl der Phasen und der Datenformate	0	80h	3100h	01h
2	F0V1	UINT_8	Frame 0: Wert 1 (IDx)	1	81h	3101h	02h
3	F0V2	UINT_8	Frame 0: Wert 2 (IDx)	9		3102h	03h
4	F0V3	UINT_8	Frame 0: Wert 3 (IDx)	13		3103h	04h
5	F0V4	UINT_8	Frame 0: Wert 4 (IDx)	12		3104h	05h
6	F0V5	UINT_8	Frame 0: Wert 5 (IDx)	0		3105h	06h
102	IRMS_MAX ¹	UINT_32	Strom Obergrenze [mA]	01	82h	3106h	07h
			Wertebereich: 0 25000000			3109h	
104	VRMS_MAX	UINT_16	Spannung Obergrenze [V]	260	83h	310Ah	08h
			Wertebereich: 0 500			310Bh	
105	VRMS_MIN	UINT_16	Spannung Untergrenze [V]	200		310Ch	09h
			Wertebereich: 0 500			310Dh	

031-1PAxx - Al1x 3Ph 230/400V > Parametrierdaten

IDx	Name	Datentyp	Beschreibung	Default (dez.)	DS	IX	SX
106	PF_MIN	UINT_8	Cos φ Untergrenze [0,01] Wertebereich: 0 100	30	84h	310Eh	0Ah
107	T_MAX	UINT_16	Temperatur Obergrenze [0,01°C] Wertebereich: 0 20000	7000	85h	310Fh 3110h	0Bh
108	F_MAX	UINT_16	Frequenz Obergrenze [0,01 Hz] Wertebereich: 0 20000	5100		3111h 3112h	0Ch
109	F_MIN	UINT_16	Frequenz Untergrenze [0,01 Hz] Wertebereich: 0 20000	4900		3113h 3114h	0Dh
111	WANDLER_I	UINT_16	Stromwandlerfaktor Wertebereich: 1 5000	1		3115h 3116h	0Eh
112	HARM	UINT_8	Nummer der harmonischen Oberwelle \$\mathrightarrow\text{"Harmonische Oberwellen" Seite 318}\$ Wertebereich: 1 30	1	86h	3117h	0Fh

Die Parameter werden im Big-Endian-Format übertragen (Byte-Reihenfolge: High-Byte, Low-Byte).

¹⁾ Parameter ist anzupassen (Wert: > 0).

- Solange nach dem Aus- und wieder Einschalten keine Parameter von der Kopfstation an das Modul gesendet wurden, werden bei einem Lesezugriff vom Modul Defaultwerte übermittelt und nicht die im Modul gespeicherten Parameter.
- Nach dem Übertragen der Parameter auf das Modul werden alle Statusbits zurückgesetzt und die Messung wird für eine kurze Zeit unterbrochen!
- Bitte beachten Sie, sobald mindestens eine Phase deaktiviert ist, werden die Parameter PF_MIN und VRMS_MIN ignoriert und auf "0" gesetzt.

Datentyp

⋄ "Datentyp" Seite 316

031-1PAxx - Al1x 3Ph 230/400V > Parametrierdaten

CFG

Bit	Name	Beschreibung	Default		
0	reserviert		0		
1	Write Protect ¹	Schreibschutzbit für Parametrierung über Webserver 0: Schreibschutz deaktiviert 1: Schreibschutz aktiviert Bitte nachfolgenden Hinweis beachten!	1 ¹		
2	reserviert		0		
3	Phase 1	Messung Phase L1 ■ 0: Messung ist aktiviert ■ 1: Messung ist deaktiviert	1		
4	Phase 2	Messung Phase L2 ■ 0: Messung ist aktiviert ■ 1: Messung ist deaktiviert	1		
5	Phase 3	Messung Phase L3 ■ 0: Messung ist aktiviert ■ 1: Messung ist deaktiviert	1		
6	Data type	Datentyp der Messwerte in den Nutzdaten □ 0: Ganzzahl (INT) □ 1: 32Bit Gleitkommazahl (FLOAT) nach DIN IEEE 754	0		
7	Byteorder	Datenformat der Messwerte in den Nutzdaten □ 0: Big-Endian: Byte-Reihenfolge: High-Byte, Low-Byte □ 1: Little-Endian: Byte-Reihenfolge: Low-Byte, High-Byte	0		
1) Ein Zugriff auf den Parameter "Write Protect" ist nur über den Webserver des Kopfmoduls möglich (nicht über GSD oder GSDML).					

\bigcirc

1) Write Protect

Der Parameter "Write Protect" ist nur relevant, wenn das Modul an einer Kopfstation mit integriertem Webserver betrieben wird. Soll das Modul über den Webserver parametriert werden, muss "Write Protect" auf "0" gesetzt werden, ansonsten werden die geänderten Parameter nicht übernommen!

F0V1 ... F0V5

Im Modul können Sie mehrere Messgrößen zu einem Datenpaket (Frame) zusammenfassen, welches in einem Durchgang übertragen wird. *∜ "Frame" Seite 315*

Über F0V1 ... F0V5 können Sie durch Angabe der ID der entsprechenden Messgröße die Datenbereiche von Frame 0 definieren. Bitte beachten Sie, dass hierbei die Nutzdatenlänge von 12Byte nicht überschritten wird. *∜ Kap. 3.27.6.2 "Messgrößen - 031-1PA00"* Seite 329

- Wertebereich: 0 ... 41
- Default:
 - F0V1: 1 (Wirkenergie Verbraucher)
 - F0V2: 9 (Wirkleistung gesamt)
 - F0V3: 13 (cos φ gesamt)
 - F0V4: 0
 - F0V5: 0

031-1PAxx - Al1x 3Ph 230/400V > Messgrößen

3.27.6 Messgrößen

3.27.6.1 Messgrößen - 031-1PA10

Datentyp INT

ID	Beschreibung	Datentyp	Einheit	Min. Wert	Max. Wert
1	Zähler: Wirkenergie Verbraucher	UINT_32	1Wh ¹	0	4 294 967 295
2	Zähler: Wirkenergie Erzeuger	UINT_32	1Wh ¹	0	4 294 967 295
3	Zähler: Wirkenergie L1 Verbraucher	UINT_32	1Wh ¹	0	4 294 967 295
4	Zähler: Wirkenergie L1 Erzeuger	UINT_32	1Wh ¹	0	4 294 967 295
5	Zähler: Wirkenergie L2 Verbraucher	UINT_32	1Wh ¹	0	4 294 967 295
6	Zähler: Wirkenergie L2 Erzeuger	UINT_32	1Wh ¹	0	4 294 967 295
7	Zähler: Wirkenergie L3 Verbraucher	UINT_32	1Wh ¹	0	4 294 967 295
8	Zähler: Wirkenergie L3 Erzeuger	UINT_32	1Wh ¹	0	4 294 967 295
9	Wirkleistung gesamt	INT_32	1mW	-2 147 483 647	2 147 483 647
10	Blindleistung gesamt	INT_32	1mW	-2 147 483 647	2 147 483 647
11	Scheinleistung gesamt	INT_32	1mW	-2 147 483 647	2 147 483 647
12	Frequenz	UINT_16	0,01Hz	4600	6400
13	Cos φ gesamt²	INT_8	0,01	-100	100
14	Temperatur	INT_16	0,01°C	-2500	8500
15	Wirkleistung L1	INT_32	1mW	-715 827 882	715 827 882
16	Blindleistung L1	INT_32	1mW	-715 827 882	715 827 882
17	Scheinleistung L1	INT_32	1mW	-715 827 882	715 827 882
18	Spannung L1	UINT_32	1mV	0	30 000 000
19	Strom L1	UINT_32	1mA	0	25 000 000
20	Cos φ L1 ²	INT_8	0,01	-100	100
21	Harmonische Spannung L1	UINT_32	1mV	0	30 000 000
22	Harmonischer Strom L1	UINT_32	1mA	0	25 000 000
23	Wirkleistung L2	INT_32	1mW	-715 827 882	715 827 882
24	Blindleistung L2	INT_32	1mW	-715 827 882	715 827 882
25	Scheinleistung L2	INT_32	1mW	-715 827 882	715 827 882
26	Spannung L2	UINT_32	1mV	0	30 000 000
27	Strom L2	UINT_32	1mA	0	25 000 000
28	Cos φ L2 ²	INT_8	0,01	-100	100
29	Harmonische Spannung L2	UINT_32	1mV	0	30 000 000
30	Harmonischer Strom L2	UINT_32	1mA	0	25 000 000
31	Wirkleistung L3	INT_32	1mW	-715 827 882	715 827 882
32	Blindleistung L3	INT_32	1mW	-715 827 882	715 827 882
33	Scheinleistung L3	INT_32	1mW	-715 827 882	715 827 882
34	Spannung L3	UINT_32	1mV	0	30 000 000
35	Strom L3	UINT_32	1mA	0	25 000 000

031-1PAxx - Al1x 3Ph 230/400V > Messgrößen

ID	Beschreibung	Datentyp	Einheit	Min. Wert	Max. Wert
36	$\text{Cos } \phi \text{ L}3^2$	INT_8	0,01	-100	100
37	Harmonische Spannung L3	UINT_32	1mV	0	30 000 000
38	Harmonischer Strom L3	UINT_32	1mA	0	25 000 000
39	Überlauf Energiezähler Verbraucher Wird bei Überlauf des Energiezählers (ID = 1) um 1 inkrementiert	UINT_32		0	4 294 967 295
40	Überlauf Energiezähler Erzeuger Wird bei Überlauf des Energiezählers (ID = 2) um 1 inkrementiert	UINT_32		0	4 294 967 295
41	Statusbits 🤄 "Status Bits" Seite 329	UINT_32			

1) Die Anzeigeauflösung der Energiezähler ist 1Wh x WANDLER_I x WANDLER_U (Stromwandlerfaktor x Spannungswandlerfaktor). 🖔 Kap. 3.27.5.1 "Parameter - 031-1PA10" Seite 320

2) Die Messgenauigkeit des Cos φ ist ab einem Mindeststrom von 100mA x WANDLER_I (Stromwandlerfaktor) gegeben.

Toleranz Siehe Technische Daten 5 Kap. 3.27.1.1 "031-1PA10" Seite 307

ID Jeder Messgröße ist eine ID zugeordnet. Der Zugriff auf den Messwert einer Messgröße

erfolgt durch Angabe der entsprechenden ID.

♥ "Datentyp" Seite 316 **Datentyp**

Max. Leistung gesamt Die max. darstellbare Leistung gesamt für 3 Phasen beträgt

- ±2 147 483 647mW (INT 32)

3 * Umax * WANDLER_U * Imax * WANDLER_I

Wird die Leistung gesamt von ±2 147 483 647mW (INT_32) überschritten, so wird der

Maximalwert ausgegeben.

Überlauf Energiezähler 0xXX112233

XX: nicht genutzt

11: Überlauf Phase L1

22: Überlauf Phase L2

33: Überlauf Phase L3

Messgrößen Datentyp FLOAT

ID	Beschreibung	Datentyp	Einheit	Min. Wert	Max. Wert
1	Zähler: Wirkenergie Verbraucher	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
2	Zähler: Wirkenergie Erzeuger	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
3	Zähler: Wirkenergie L1 Verbraucher	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
4	Zähler: Wirkenergie L1 Erzeuger	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
5	Zähler: Wirkenergie L2 Verbraucher	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
6	Zähler: Wirkenergie L2 Erzeuger	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
7	Zähler: Wirkenergie L3 Verbraucher	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸

031-1PAxx - Al1x 3Ph 230/400V > Messgrößen

ID	Beschreibung	Datentyp	Einheit	Min. Wert	Max. Wert	
8	Zähler: Wirkenergie L3 Erzeuger	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸	
9	Wirkleistung gesamt	FLOAT	1W	-2,147484 x 10 ⁶	2,147484 x 10 ⁶	
10	Blindleistung gesamt	FLOAT	1W	-2,147484 x 10 ⁶	2,147484 x 10 ⁶	
11	Scheinleistung gesamt	FLOAT	1W	-2,147484 x 10 ⁶	2,147484 x 10 ⁶	
12	Frequenz	FLOAT	10Hz	4,600 x 10 ³	6,400 x 10 ³	
13	Cos φ gesamt ²	FLOAT	10	-0,01	1,0	
14	Temperatur	FLOAT	10°C	-2,500 x 10 ³	8,500 x 10 ³	
15	Wirkleistung L1	FLOAT	1W	-7,158278 x 10 ⁵	7,158278 x 10 ⁵	
16	Blindleistung L1	FLOAT	1W	-7,158278 x 10 ⁵	7,158278 x 10 ⁵	
17	Scheinleistung L1	FLOAT	1W	-7,158278 x 10 ⁵	7,158278 x 10 ⁵	
18	Spannung L1	FLOAT	1V	0	3,0 x 10 ⁴	
19	Strom L1	FLOAT	1A	0	2,5 x 10 ⁴	
20	Cos φ L1 ²	FLOAT	10	-0,01	1,0	
21	Harmonische Spannung L1	FLOAT	1V	0	3,0 x 10 ⁴	
22	Harmonischer Strom L1	FLOAT	1A	0	2,5 x 10 ⁴	
23	Wirkleistung L2	FLOAT	1W	-7,158278 x 10 ⁵	7,158278 x 10 ⁵	
24	Blindleistung L2	FLOAT	1W	-7,158278 x 10 ⁵	7,158278 x 10 ⁵	
25	Scheinleistung L2	FLOAT	1W	-7,158278 x 10 ⁵	7,158278 x 10 ⁵	
26	Spannung L2	FLOAT	1V	0	3,0 x 10 ⁴	
27	Strom L2	FLOAT	1A	0	2,5 x 10 ⁴	
28	Cos φ L2 ²	FLOAT	10	-0,01	1,0	
29	Harmonische Spannung L2	FLOAT	1V	0	3,0 x 10 ⁴	
30	Harmonischer Strom L2	FLOAT	1A	0	2,5 x 10 ⁴	
31	Wirkleistung L3	FLOAT	1W	-7,158278 x 10 ⁵	7,158278 x 10 ⁵	
32	Blindleistung L3	FLOAT	1W	-7,158278 x 10 ⁵	7,158278 x 10 ⁵	
33	Scheinleistung L3	FLOAT	1W	-7,158278 x 10 ⁵	7,158278 x 10 ⁵	
34	Spannung L3	FLOAT	1V	0	3,0 x 10 ⁴	
35	Strom L3	FLOAT	1A	0	2,5 x 10 ⁴	
36	Cos φ L3 ²	FLOAT	10	-0,01	1,0	
37	Harmonische Spannung L3	FLOAT	1V	0	3,0 x 10 ⁴	
38	Harmonischer Strom L3	FLOAT	1A	0	2,5 x 10 ⁴	
39	Überlauf Energiezähler Verbraucher	FLOAT		Überlauf Energiezä	ähler bei FLOAT	
	Wird bei Überlauf des Energiezählers (ID = 1) um 1 inkrementiert			unwirksam	unwirksam	
40	Überlauf Energiezähler Erzeuger	FLOAT		Überlauf Energiezähler bei FLOAT unwirksam		
	Wird bei Überlauf des Energiezählers (ID = 2) um 1 inkrementiert			uliwiikədili		
41	Statusbits 🤄 "Status Bits" Seite 329	UINT_32				

031-1PAxx - Al1x 3Ph 230/400V > Messgrößen

2) Die Messgenauigkeit des Cos φ ist ab einem Mindeststrom von 100mA x WANDLER_I (Stromwandlerfaktor) gegeben.

Toleranz Siehe Technische Daten & Kap. 3.27.1.1 "031-1PA10" Seite 307

ID Jeder Messgröße ist eine ID zugeordnet. Der Zugriff auf den Messwert einer Messgröße

erfolgt durch Angabe der entsprechenden ID.

Datentyp

⋄ "Datentyp" Seite 316

Max. Leistung gesamt ■ Die max. darstellbare Leistung gesamt für 3 Phasen beträgt

- ±2,147484 x 10 6 W (FLOAT)

3 * Umax * WANDLER_U * Imax * WANDLER_I

Wird die *Leistung gesamt* von $\pm 2,147484 \times 10^6 W$ (FLOAT) überschritten, so wird der Maximalwert ausgegeben.

328

031-1PAxx - Al1x 3Ph 230/400V > Messgrößen

Status Bits

Über die Status Bits erhalten Sie Informationen zu Grenzwertüberschreitungen.

- Die Status Bits werden wie andere Messwerte aktualisiert, sobald die DS-ID inkrementiert wird.
- Gesetzte Bits von *Status Bits* bleiben solange gesetzt, bis diese quittiert werden. ∜ *Kap. 3.27.7.4.5 "CMD Frame" Seite 342*
 - Mit der Quittierung der Status Bits werden die entsprechenden LEDs zur Grenzwertüberschreitung wieder gelöscht.
- Byte-Reihenfolge: High-Byte, Low-Byte (bei Big-Endian)

Byte	Beschreibung
0	 0: nicht aktiv, 1: aktiv Bit 0: Spannung an Phase L2 unter dem Grenzwert (L2: VRMS_MIN) Bit 1: Spannung an Phase L3 unter dem Grenzwert (L3: VRMS_MIN) Bit 2: Spannung an Phase L1 über dem Grenzwert (L1: VRMS_MAX) Bit 3: Spannung an Phase L2 über dem Grenzwert (L2: VRMS_MAX) Bit 4: Spannung an Phase L3 über dem Grenzwert (L3: VRMS_MAX) Bit 5: Temperatur über dem Grenzwert (T_MAX) Bit 6: Frequenz unter dem Grenzwert (F_MIN) Bit 7: Frequenz über dem Grenzwert (F_MAX)
1	 0: nicht aktiv, 1: aktiv Bit 0 0: gelöscht über CMD Frame (0x04) 1: wenn das Modul einen Reset durchlaufen hat. Dies erfolgt nach PowerON. Bit 1: Strom für Phase L1 über dem Grenzwert (L1: IRMS_MAX) Bit 2: Strom für Phase L2 über dem Grenzwert (L2: IRMS_MAX) Bit 3: Strom für Phase L3 über dem Grenzwert (L3: IRMS_MAX) Bit 4: Wirkungsgrad cos φ Phase L1 unter dem Grenzwert (L1: PF_MIN) Bit 5: Wirkungsgrad cos φ Phase L2 unter dem Grenzwert (L2: PF_MIN) Bit 6: Wirkungsgrad cos φ Phase L3 unter dem Grenzwert (L3: PF_MIN) Bit 7: Spannung an Phase L1 unter dem Grenzwert (L1: VRMS_MIN)
2, 3	reserviert

3.27.6.2 Messgrößen - 031-1PA00

Datentyp INT

ID	Beschreibung	Datentyp	Einheit	Min. Wert	Max. Wert
1	Zähler: Wirkenergie Verbraucher	UINT_32	1Wh ¹	0	4 294 967 295
2	Zähler: Wirkenergie Erzeuger	UINT_32	1Wh ¹	0	4 294 967 295
3	Zähler: Wirkenergie L1 Verbraucher	UINT_32	1Wh ¹	0	4 294 967 295
4	Zähler: Wirkenergie L1 Erzeuger	UINT_32	1Wh ¹	0	4 294 967 295
5	Zähler: Wirkenergie L2 Verbraucher	UINT_32	1Wh ¹	0	4 294 967 295
6	Zähler: Wirkenergie L2 Erzeuger	UINT_32	1Wh ¹	0	4 294 967 295
7	Zähler: Wirkenergie L3 Verbraucher	UINT_32	1Wh ¹	0	4 294 967 295
8	Zähler: Wirkenergie L3 Erzeuger	UINT_32	1Wh ¹	0	4 294 967 295

031-1PAxx - Al1x 3Ph 230/400V > Messgrößen

ID	Beschreibung	Datentyp	Einheit	Min. Wert	Max. Wert
9	Wirkleistung gesamt	INT_32	1mW	-3 750 000	3 750 000
10	Blindleistung gesamt	INT_32	1mW	-3 750 000	3 750 000
11	Scheinleistung gesamt	INT_32	1mW	-3 750 000	3 750 000
12	Frequenz	UINT_16	0,01Hz	4600	6400
13	Cos φ gesamt ²	INT_8	0,01	-100	100
14	Temperatur	INT_16	0,01°C	-2500	8500
15	Wirkleistung L1	INT_32	1mW	-1 250 000	1 250 000
16	Blindleistung L1	INT_32	1mW	-1 250 000	1 250 000
17	Scheinleistung L1	INT_32	1mW	-1 250 000	1 250 000
18	Spannung L1	UINT_32	1mV	0	300 000
19	Strom L1	UINT_32	1mA	0	5 000 000
20	Cos φ L1 ²	INT_8	0,01	-100	100
21	Harmonische Spannung L1	UINT_32	1mV	0	300 000
22	Harmonischer Strom L1	UINT_32	1mA	0	5 000 000
23	Wirkleistung L2	INT_32	1mW	-1 250 000	1 250 000
24	Blindleistung L2	INT_32	1mW	-1 250 000	1 250 000
25	Scheinleistung L2	INT_32	1mW	-1 250 000	1 250 000
26	Spannung L2	UINT_32	1mV	0	300 000
27	Strom L2	UINT_32	1mA	0	5 000 000
28	Cos φ L2 ²	INT_8	0,01	-100	100
29	Harmonische Spannung L2	UINT_32	1mV	0	300 000
30	Harmonischer Strom L2	UINT_32	1mA	0	5 000 000
31	Wirkleistung L3	INT_32	1mW	-1 250 000	1 250 000
32	Blindleistung L3	INT_32	1mW	-1 250 000	1 250 000
33	Scheinleistung L3	INT_32	1mW	-1 250 000	1 250 000
34	Spannung L3	UINT_32	1mV	0	300 000
35	Strom L3	UINT_32	1mA	0	5 000 000
36	$Cos \phi L3^2$	INT_8	0,01	-100	100
37	Harmonische Spannung L3	UINT_32	1mV	0	300 000
38	Harmonischer Strom L3	UINT_32	1mA	0	5 000 000
39	Überlauf Energiezähler	UINT_32		0	4 294 967 295
	Wird bei Überlauf des Energiezählers (ID = 1) um 1 inkrementiert				
40	Überlauf Energiezähler	UINT_32		0	4 294 967 295
	Wird bei Überlauf des Energiezählers (ID = 2) um 1 inkrementiert				
41	Statusbits % "Status Bits" Seite 333	UINT_32			

¹⁾ Die Anzeige-Auflösung der Energiezähler ist 1Wh x WANDLER_I (Stromwandlerfaktor). % Kap. 3.27.5.2 "Parameter - 031-1PA00" Seite 322

²⁾ Die Messgenauigkeit des Cos ϕ ist ab einem Mindeststrom von 5mA x WANDLER_/ (Stromwandlerfaktor) gegeben.

031-1PAxx - Al1x 3Ph 230/400V > Messgrößen

Toleranz Siehe Technische Daten ♥ Kap. 3.27.1.2 "031-1PA00" Seite 310

ID Jeder Messgröße ist eine ID zugeordnet. Der Zugriff auf den Messwert einer Messgröße

erfolgt durch Angabe der entsprechenden ID.

Datentyp

♥ "Datentyp" Seite 316

Max. Leistung gesamt ■ Die max. darstellbare Leistung gesamt für 3 Phasen beträgt

- ±3 750 000mW

3 * Umax * Imax * WANDLER_I = z.B.: 3 * 100V * 1A * 5000

Wird die Leistung gesamt von $\pm 3\,750\,000$ mW überschritten, so wird der Maximalwert

ausgegeben.

Überlauf Energiezähler ■ 0xXX112233

XX: nicht genutzt

- 11: Überlauf Phase L1

22: Überlauf Phase L2

- 33: Überlauf Phase L3

Messgrößen Datentyp FLOAT

ID	Beschreibung	Datentyp	Einheit	Min. Wert	Max. Wert
1	Zähler: Wirkenergie Verbraucher	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
2	Zähler: Wirkenergie Erzeuger	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
3	Zähler: Wirkenergie L1 Verbraucher	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
4	Zähler: Wirkenergie L1 Erzeuger	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
5	Zähler: Wirkenergie L2 Verbraucher	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
6	Zähler: Wirkenergie L2 Erzeuger	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
7	Zähler: Wirkenergie L3 Verbraucher	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
8	Zähler: Wirkenergie L3 Erzeuger	FLOAT	1Wh ¹	0	5,497558 x 10 ⁸
9	Wirkleistung gesamt	FLOAT	1W	-3,75 x 10 ⁶	3,75 x 10 ⁶
10	Blindleistung gesamt	FLOAT	1W	-3,75 x 10 ⁶	3,75 x 10 ⁶
11	Scheinleistung gesamt	FLOAT	1W	-3,75 x 10 ⁶	3,75 x 10 ⁶
12	Frequenz	FLOAT	10Hz	4,600 x 10 ³	6,400 x 10 ³
13	Cos φ gesamt²	FLOAT	10	-0,01	1,0
14	Temperatur	FLOAT	10°C	-2,500 x 10 ³	8,500 x 10 ³
15	Wirkleistung L1	FLOAT	1W	-1,25 x 10 ⁶	1,25 x 10 ⁶
16	Blindleistung L1	FLOAT	1W	-1,25 x 10 ⁶	1,25 x 10 ⁶
17	Scheinleistung L1	FLOAT	1W	-1,25 x 10 ⁶	1,25 x 10 ⁶
18	Spannung L1	FLOAT	1V	0	3,0 x 10 ⁴
19	Strom L1	FLOAT	1A	0	2,5 x 10 ⁴
20	Cos φ L1 ²	FLOAT	10	-0,01	1,0

031-1PAxx - Al1x 3Ph 230/400V > Messgrößen

ID	Beschreibung	Datentyp	Einheit	Min. Wert	Max. Wert
21	Harmonische Spannung L1	FLOAT	1V	0	3,0 x 10 ⁴
22	Harmonischer Strom L1	FLOAT	1A	0	2,5 x 10 ⁴
23	Wirkleistung L2	FLOAT	1W	-1,25 x 10 ⁶	1,25 x 10 ⁶
24	Blindleistung L2	FLOAT	1W	-1,25 x 10 ⁶	1,25 x 10 ⁶
25	Scheinleistung L2	FLOAT	1W	-1,25 x 10 ⁶	1,25 x 10 ⁶
26	Spannung L2	FLOAT	1V	0	3,0 x 10 ⁴
27	Strom L2	FLOAT	1A	0	2,5 x 10 ⁴
28	Cos φ L2 ²	FLOAT	10	-0,01	1,0
29	Harmonische Spannung L2	FLOAT	1V	0	3,0 x 10 ⁴
30	Harmonischer Strom L2	FLOAT	1A	0	2,5 x 10 ⁴
31	Wirkleistung L3	FLOAT	1W	-1,25 x 10 ⁶	1,25 x 10 ⁶
32	Blindleistung L3	FLOAT	1W	-1,25 x 10 ⁶	1,25 x 10 ⁶
33	Scheinleistung L3	FLOAT	1W	-1,25 x 10 ⁶	1,25 x 10 ⁶
34	Spannung L3	FLOAT	1V	0	3,0 x 10 ⁴
35	Strom L3	FLOAT	1A	0	2,5 x 10 ⁴
36	$Cos \phi L3^2$	FLOAT	10	-0,01	1,0
37	Harmonische Spannung L3	FLOAT	1V	0	3,0 x 10 ⁴
38	Harmonischer Strom L3	FLOAT	1A	0	2,5 x 10 ⁴
39	Überlauf Energiezähler Verbraucher Wird bei Überlauf des Energiezählers (ID = 1) um 1 inkrementiert	FLOAT		Überlauf Energiezähler bei FLOAT unwirksam	
40	Überlauf Energiezähler Erzeuger Wird bei Überlauf des Energiezählers (ID = 2) um 1 inkrementiert	FLOAT		Überlauf Energiezähler bei FLOAT unwirksam	
41	Statusbits 🥸 "Status Bits" Seite 333	UINT_32			

1) Die Anzeigeauflösung der Energiezähler ist 1Wh x WANDLER_I (Stromwandlerfaktor).

Kap. 3.27.5.2 "Parameter - 031-1PA00" Seite 322

2) Die Messgenauigkeit des Cos ϕ ist ab einem Mindeststrom von 100mA x WANDLER_I (Stromwandlerfaktor) gegeben.

Toleranz Siehe Technische Daten ♥ Kap. 3.27.1.2 "031-1PA00" Seite 310

ID Jeder Messgröße ist eine ID zugeordnet. Der Zugriff auf den Messwert einer Messgröße

erfolgt durch Angabe der entsprechenden ID.

Datentyp

♥ "Datentyp" Seite 316

Max. Leistung gesamt ■ Die max. darstellbare Leistung gesamt für 3 Phasen beträgt

 $- \pm 3,75 \times 10^{6}$ mW (FLOAT)

■ 3 * Umax * Imax * WANDLER_I = z.B.: 3 * 100V* 1A * 5000

Wird die *Leistung gesamt* von $\pm 3,75$ x 10^6 mW (FLOAT) überschritten, so wird der Maximalwert ausgegeben.

031-1PAxx - Al1x 3Ph 230/400V > Messgrößen

Status Bits

Über die Status Bits erhalten Sie Informationen zu Grenzwertüberschreitungen.

- Die Grenzwerte können Sie über die Parametrierung definieren. ∜ Kap. 3.27.5.2 "Parameter 031-1PA00" Seite 322
- Die Status Bits werden wie andere Messwerte aktualisiert, sobald die DS-ID inkrementiert wird.
- Gesetzte Bits von *Status Bits* bleiben solange gesetzt, bis diese über *∜ Kap.* 3.27.7.4.5 "CMD Frame" Seite 342 quittiert werden.
 - Mit der Quittierung der Status Bits werden die entsprechenden LEDs zur Grenzwertüberschreitung wieder gelöscht.
- Byte-Reihenfolge: High-Byte, Low-Byte (Big-Endian)

Byte	Beschreibung
0	 0: nicht aktiv, 1: aktiv Bit 0: Spannung an Phase L2 unter dem Grenzwert (L2: VRMS_MIN) Bit 1: Spannung an Phase L3 unter dem Grenzwert (L3: VRMS_MIN) Bit 2: Spannung an Phase L1 über dem Grenzwert (L1: VRMS_MAX) Bit 3: Spannung an Phase L2 über dem Grenzwert (L2: VRMS_MAX) Bit 4: Spannung an Phase L3 über dem Grenzwert (L3: VRMS_MAX) Bit 5: Temperatur über dem Grenzwert (T_MAX) Bit 6: Frequenz unter dem Grenzwert (F_MIN) Bit 7: Frequenz über dem Grenzwert (F_MAX)
1	 0: nicht aktiv, 1: aktiv Bit 0 – 0: gelöscht über CMD Frame (0x04) – 1: wenn das Modul einen Reset durchlaufen hat. Dies erfolgt nach PowerON. Bit 1: Strom für Phase L1 über dem Grenzwert (L1: IRMS_MAX) Bit 2: Strom für Phase L2 über dem Grenzwert (L2: IRMS_MAX) Bit 3: Strom für Phase L3 über dem Grenzwert (L3: IRMS_MAX) Bit 4: Wirkungsgrad cos φ Phase L1 unter dem Grenzwert (L1: PF_MIN) Bit 5: Wirkungsgrad cos φ Phase L2 unter dem Grenzwert (L2: PF_MIN) Bit 6: Wirkungsgrad cos φ Phase L3 unter dem Grenzwert (L3: PF_MIN) Bit 7: Spannung an Phase L1 unter dem Grenzwert (L1: VRMS_MIN)
2, 3	reserviert

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

3.27.7 Prozessdatenkommunikation

Übersicht

Während der Laufzeit erfolgt die Kommunikation mit dem Modul über Telegramme im Prozessabbild. Hier haben Sie folgende Möglichkeiten:

- Messwert lesen
- Frame mit Messgrößen definieren
- Frame mit Messwerten lesen
- Steuerbefehl senden

3.27.7.1 Struktur

Telegramm

Die Kommunikation erfolgt über den Ein- und Ausgabereich des Kopfmoduls. Das Kopfmodul sendet über den Ausgabebereich ein Anforderungstelegramm an das Modul. Dieses antwortet mit den angeforderten Daten in den Eingabebereich des Kopfmoduls. Abhängig vom eingesetzten Kopfmodul kann dies mehrere Zyklen in Anspruch nehmen, bis alle Daten in den Eingabebereich übermittelt sind. Zur Sicherung der Konsistenz werden alle Messwerte, welche aus der gleichen Messung stammen unter einer *DS-ID* im Modul abgelegt. § "*DS-ID*" Seite 315

Das Telegramm hat für Ein- und Ausgabedaten eine Länge von 16Byte und folgende Struktur:

Byte	Funktion
В0	B0: Header-Byte 0
	 Bit 3 0: Status Kommunikation
B1	B1: Header-Byte 1
	 ■ ID der Messgröße (1 41) – Jeder Messgröße ist eine ID zugeordnet. Der Zugriff auf den Messwert einer Messgröße erfolgt durch Angabe der entsprechenden ID ⑤ Kap. 3.27.6.1 "Messgrößen - 031-1PA10" Seite 325 ⑤ Kap. 3.27.6.2 "Messgrößen - 031-1PA00" Seite 329
B2	B2: Header-Byte 2
	 Bit 3 0: Datensatz-ID (<i>DS-ID</i>) des Messwerts (1 15) Die Messwerte aus einer Messung werden im Modul unter einer <i>DS-ID</i> zusammengefasst. Bit 7 4: Länge der Nutzdaten (1 12) Abhängig vom verwendeten Telegrammtyp finden Sie hier bis zu 12Byte Nutzdaten.
B3	B3: Header-Byte 3 - Sammelstatus & Kap. 3.27.7.3 "Sammelstatus" Seite 335
D00	D00 D11: Nutzdaten
	■ Nutzdaten für Sende- und Empfangsdaten
D11	Angabe der Länge der Nutzdaten von D00 D11. Im Fehlerfall werden keine Nutzdaten übertragen, d.h. Länge der Nutzdaten ist 0 und das Modul meldet eine Fehlerkennung zurück.
	Wertebereich: 0 12

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

3.27.7.2 Status Kommunikation

Über das Header-Byte 0 (Bit 3 ... 0) können Sie den Status der Kommunikation ermitteln. In Fehlerfall werden keine Nutzdaten übertragen, d.h. Länge der Nutzdaten ist 0. Bitte beachten Sie, dass niederwertige Fehlerkennungen durch höherwertige überschrieben werden.

Status	Bezeichnung
0x00	OK (kein Fehler)
0x01	Fehler: Datensatz konnte nicht aktualisiert werden
0x02	Fehler: DS-ID
0x03	Fehler: Telegrammlänge
0x04	Fehler: Frame zu groß
0x05	Fehler: Frame nicht definiert
0x06	Fehler: Messgröße nicht vorhanden
	 Kap. 3.27.6.1 "Messgrößen - 031-1PA10" Seite 325 Kap. 3.27.6.2 "Messgrößen - 031-1PA00" Seite 329
0x07	Fehler: "CMD Frame" - Kommando konnte nicht ausgeführt werden
0x08	Fehler: "Set Frame" - Ungültige Framedefinition (Set Frame)
0x09	Fehler: Telegrammtyp nicht vorhanden - ungültige Anfrage
0x0A	Fehler: Parameter - der letzte Parametersatz war ungültig
0x0E	Externer Fehler - Bitte kontaktieren Sie unseren Support
0x0F	Interner Fehler: Aufgrund einer temporären Störung bei der Verarbeitung der Messdaten konnten diese nicht aktualisiert werden. Sollte dieser Fehler öfter auftreten, kontaktieren Sie bitte unsere Hotline.

3.27.7.3 Sammelstatus

Mit diesem Byte erhalten Sie eine Überblick über eventuelle Fehlermeldungen:

- Bit 0: Frequenz *F_MAX* überschritten
- Bit 1: Frequenz *F MIN* unterschritten
- Bit 2: Temperatur *T_MAX* überschritten
- Bit 3: Spannung *VRMS_MAX* überschritten
- Bit 4: Spannung VRMS MIN unterschritten
- Bit 5: Wirkungsgrad *PF MIN* unterschritten
- Bit 6: Strom *IRMS MAX* überschritten
- Bit 7: reserviert

Detaillierte Informationen zu einem Fehler erhalten Sie über die Status Bits:

- 031-1PA10 ♥ "Status Bits" Seite 329
- 031-1PA00 🤄 "Status Bits" Seite 333

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

3.27.7.4 Telegrammtyp

Durch Angabe des *Telegrammtyps* definieren Sie den Inhalt des Antwort-Telegramms. Folgende Telegrammtypen stehen Ihnen zur Verfügung:

Тур	Bezeichnung	Seite	
0x00	"Zero Frame": Zugriff auf Frame 0	∜ 336	
0x10	"Read Value": Den Messwert einer Messgröße lesen	∜ 336	
0x20	"Read Frame": Ein zuvor definiertes Datenpaket (Frame) lesen	∜ 340	
0x30	"Set Frame": Datenbereiche eines Datenpakets (Frame) definieren	∜ 338	
0x40	"CMD Frame": Befehl ausgeben	∜ 342	
0x60 ¹	"Read Param": Parameter lesen	∜ 345	
1) Dieser Telegrammtyp wird vom Energiemess-Modul 031-1PA00 nicht unterstützt.			

3.27.7.4.1 Zero Frame

Dieser Telegrammtyp ist gleichbedeutend mit "Read Frame" & Kap. 3.27.7.4.4 "Read Frame" Seite 340 auf Frame 0 angewendet. Nach dem Hochlauf des Moduls erfolgen automatische Zero Frame-Anforderungen solange bis vom Kopfmodul die Prozessdatenkommunikation übernommen wird.

3.27.7.4.2 Read Value

Mit "Read Value" können Sie einzelne Messwerte abfragen.

Anforderung

Byte	Wert	Beschreibung
В0	0x10	 Bit 3 0: Fehlercode (nicht relevant) Bit 6 4: 001 Telegrammtyp "Read Value" Bit 7: 0 fix reserviert
B1		■ ID der Messgröße. 🤄 "ID" Seite 315
B2		■ Bit 7 4: Länge der Nutzdaten (0)
		■ Bit 3 0: Datensatz-ID <i>DS-ID</i> des Messwerts der gelesen werden soll. <i>∜ "DS-ID"</i> Seite 315
B3	0x00	■ Sammelstatus (nicht relevant)
D00	-	■ Nutzdaten (nicht relevant)
D11		

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

Rückantwort

Byte	Wert	Beschreibung
В0	0x10	 ■ Bit 3 0: Status Kommunikation ∜ Kap. 3.27.7.2 "Status Kommunikation" Seite 335 ■ Bit 6 4: 001 Telegrammtyp "Read Value" ■ Bit 7: 0 fix reserviert
B1		■ ID der Messgröße aus der Anforderung.
B2		■ Bit 7 4: Länge der Nutzdaten hier des Messwerts in Byte.
		■ Bit 3 0: <i>DS-ID</i> des Messwerts aus der Anforderung, die gelesen wurde.
B3		■ Sammelstatus ∜ Kap. 3.27.7.3 "Sammelstatus" Seite 335
D00		■ Nutzdaten mit dem angeforderten Messwert
		abhängig vom parametrierten DatenformatByte-Reihenfolge: High-Byte, Low-Byte (Big-Endian)
D11		 Byte-Reihenfolge: Low-Byte, High-Byte (Little-Endian)

Beispiel "Read Value"

Im dargestellten Beispiel wird mit ID = 14 die Temperatur des Moduls für die DS-ID = 1 angefordert.

Anforderung

Byte	Wert	Beschreibung
B0	0x10	Telegrammtyp "Read Value".
B1	0x0E	ID der Messgröße. 🤄 "ID" Seite 315
B2	0x01	DS-ID des Messwerts, der gelesen werden soll. 🤄 "DS-ID" Seite 315
B3	0x00	Sammelstatus (nicht relevant).
D00	-	Nutzdaten (nicht relevant).
D11		

Byte	Wert	Beschreibung
B0	0x10	Telegrammtyp "Read Value" aus der Anforderung.
B1	0x0E	ID der Messgröße aus der Anforderung.
B2	0x21	Länge der Nutzdaten hier Temperatur 2 Byte.
		DS-ID des Messwerts aus der Anforderung, der gelesen wurde.
B3	0x00	Sammelstatus: OK % Kap. 3.27.7.3 "Sammelstatus" Seite 335
D00	0x00	Nutzdaten mit der angeforderten Temperatur z.B. 35°C.
D01	0x23	

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

3.27.7.4.3 Set Frame

Übersicht

Im Modul können Sie mehrere Messgrößen zu einem Datenpaket (Frame $\mbox{\ensuremath{\sc in}}$ "Frame" Seite 315) zusammenfassen, welches in einem Durchgang übertragen wird . Mit "Set Frame" können Sie ein Frame erstellen.

Anforderung

Byte	Wert	Beschreibung	
В0	0x30	 Bit 3 0: Fehlercode (nicht relevant) Bit 6 4: 011 Telegrammtyp "Set Frame" Bit 7: 0 fix reserviert 	
B1		■ FR-ID des Frames, das gesetzt werden soll. 🤄 "FR-ID" Seite 316	
B2	!	■ Bit 7 4: Länge der Nutzdaten: 1 Byte pro Messgröße	
		■ Bit 3 0: <i>DS-ID</i>	
B3	0x00	■ Sammelstatus (nicht relevant)	
D00		■ 1Byte je Messgröße unter Berücksichtigung, dass deren Messwerte die Gesamtlänge	
		von 12Byte nicht überschreitet. Hierbei ist das Format der Messwerte zu berücksichtigen (abhängig vom parametrierten Datentyp: INT oder FLOAT).	
D11			

Byte	Wert	Beschreibung
В0	0x30	 Bit 3 0: Status Kommunikation
B1		■ FR-ID des Frames aus der Anforderung.
B2		■ Bit 7 4: Länge der Nutzdaten (0).
		■ Bit 3 0: <i>DS-ID</i>
B3		■ Sammelstatus ∜ Kap. 3.27.7.3 "Sammelstatus" Seite 335
D00		Nutzdaten (nicht relevant).
D11		

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

Beispiel "Set Frame"

Hier wird ein Frame mit der *FR-ID* 0x01 definiert. Das Frame beinhaltet folgende Messgrößen:

■ ID: 03: Zähler: Wirkenergie L1 (Verbraucher)

ID: 13: cos φ gesamtID: 12: Frequenz

Anforderung

Byte	Wert	Beschreibung
В0	0x30	Telegrammtyp "Set Frame"
B1	0x01	FR-ID des Frame, das gesetzt werden soll (FR-ID = 1). 🤄 "FR-ID" Seite 316
B2	0x30	Bit 7 4: Länge der Nutzdaten (3)
		Bit 3 0: Datensatz-ID DS-ID des Messwerts (0)
B3	0x00	Sammelstatus (nicht relevant).
D00	0x03	Nutzdaten mit den ID der Messgrößen.
D01	0x0D	
D02	0x0C	
D03	-	Restliche Nutzdaten nicht relevant.
D11		

Byte	Wert	Beschreibung
B0	0x30	Telegrammtyp "Set Frame" aus der Anforderung.
B1	0x01	FR-ID des Frame aus der Anforderung.
B2	0x00	Bit 7 4: Länge der Nutzdaten (0).
		Bit 3 0: Datensatz-ID DS-ID des Messwerts (0).
B3	0x00	Sammelstatus: OK & Kap. 3.27.7.3 "Sammelstatus" Seite 335
D00	-	Nutzdaten (nicht relevant).
D11	-	

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

3.27.7.4.4 Read Frame

Übersicht

Im Modul können Sie mehrere Messgrößen zu einem Datenpaket (Frame) zusammenfassen, welches in einem Durchgang übertragen wird. $\mbox{\ensuremath{\not{\circ}}}$ "Frame" Seite 315

Mit "Read Frame" können Sie ein Frame anfordern.

Anforderung

Byte	Wert	Beschreibung
В0	0x20	 Bit 3 0: Fehlercode (nicht relevant) Bit 6 4: 010 Telegrammtyp "Read Frame" Bit 7: 0 fix reserviert
B1		■ FR-ID des Frames, das gelesen werden soll. 🤄 "FR-ID" Seite 316
B2	0x00	■ Bit 7 4: Länge der Nutzdaten ist 0.
		■ Bit 3 0: DS-ID des Messwerts der gelesen werden soll. 🤄 "DS-ID" Seite 315
B3	0x00	Sammelstatus (nicht relevant).
D00		Nutzdaten (nicht relevant).
D11		

Byte	Wert	Beschreibung
В0	0x20	 ■ Bit 3 0: Status Kommunikation ∜ Kap. 3.27.7.2 "Status Kommunikation" Seite 335 ■ Bit 6 4: 010 Telegrammtyp "Read Value" ■ Bit 7: 0 fix reserviert
B1		■ FR-ID des Frame aus der Anforderung.
B2		■ Bit 7 4: Länge der Nutzdaten hier des Frame mit Messwerten in Byte.
		■ Bit 3 0: <i>DS-ID</i> des Messwerts aus der Anforderung, der gelesen wurde.
B3		■ Sammelstatus ∜ Kap. 3.27.7.3 "Sammelstatus" Seite 335
D00		Nutzdaten mit dem angeforderten Frame mit Messwerten.
		Abhängig vom parametrierten Datenformat.
D11		

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

Beispiel "Read Frame"

Im Beispiel wird die vorher über *"Set Frame"* definierte *FR-ID* (0x01) mit folgenden Messgrößen angefordert:

■ ID: 03: Zähler: Wirkenergie L1 (Verbraucher): 4Byte

ID: 13: cos φ gesamt: 1ByteID: 12: Frequenz: 2Byte

Anforderung

Byte	Wert	Beschreibung
B0	0x20	Telegrammtyp "Read Frame"
B1	0x01	FR-ID des Frames, das gelesen werden soll. 🤄 "FR-ID" Seite 316
B2	0x01	Bit 7 4: Länge der Nutzdaten (0) Bit 3 0: <i>DS-ID</i> des Messwerts der gelesen werden soll. \heartsuit "DS-ID" Seite 315
В3	0x00	Sammelstatus (nicht relevant).
D00	-	Nutzdaten (nicht relevant).
D11		

Byte	Wert	Beschreibung
В0	0x20	Telegrammtyp "Read Value" aus der Anforderung.
B1	0x01	FR-ID des Frame aus der Anforderung.
B2	0x71	Bit 7 4: Länge des Frame mit Messwerten (7).
		Bit 3 0: DS-ID des Messwertes aus der Anforderung (1).
B3	0x00	Sammelstatus: OK & Kap. 3.27.7.3 "Sammelstatus" Seite 335
D00	0x00	Zähler: Wirkenergie L1 (Verbraucher): 500kWh
D01	0x07	
D02	0xA1	
D03	0x20	
D04	0x5A	cos φ gesamt: 0,9
D05	0x13	Frequenz: 50Hz
D06	0x88	
D07	-	Restliche Nutzdaten nicht relevant.
D11		

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

3.27.7.4.5 CMD Frame

Mit dem "CMD Frame" können Sie Steuerbefehle an das Modul senden. Diese können verschiedene Aktionen auslösen oder zum Lesen und Schreiben von Steuerregistern verwendet werden. Folgende Steuerbefehle stehen Ihnen zur Verfügung:

- Rücksetzen aller Wirkenergiezähler
- Rücksetzen von Statusbits
- Abfrage der Firmware-Version
- Lesen des Holding Registers (nicht 031-1PA00)
- Schreiben von Z\u00e4hlerwerten bzw. setzen der Wirkenergiez\u00e4hler L1 L3 (nicht 031-1PA00)

Anforderung

Wert	eschreibung		
0x40	Bit 3 0: Fehlercode (nicht relevant) Bit 6 4: 100 Telegrammtyp "CMD Frame" Bit 7: reserviert		
	 CMD-ID des Steuerbefehls, der ausgeführt werden soll: 0x01: Rücksetzen aller Wirkenergiezähler 0x03: Rücksetzen von Statusbits 0x04: Abfrage der Firmware-Version 0x06¹: Lesen des Holding Registers 0x07¹: Schreiben in Wirkenergiezähler 		
	 Bit 7 4: Länge der Nutzdaten abhängig von CMD-ID: 0x01: Rücksetzen aller Wirkenergiezähler (Länge Nutzdaten: 0Byte) 0x03: Rücksetzen von Statusbits (Länge Nutzdaten: 4Byte) 0x04: Abfrage der Firmware-Version (Länge Nutzdaten: 0Byte) 0x06¹: Lesen des Holding Registers (Länge Nutzdaten: 0Byte) 0x07¹: Schreiben in Wirkenergiezähler (Länge Nutzdaten: 6Byte) 		
	■ Bit 3 0: Datensatz-ID <i>DS-ID</i> des Messwertes (3 7).		
0x00	Sammelstatus (nicht relevant).		
-	 Nutzdaten abhängig von CMD-ID 0x01: Rücksetzen aller Wirkenergiezähler (Nutzdaten: nicht relevant) 0x03: Rücksetzen von Statusbits: (Nutzdaten: 4Byte mit den entsprechend gesetzten Bits) 0x04: Abfrage der Firmware-Version (Nutzdaten: nicht relevant) 0x06¹: Lesen des Holding Registers (Nutzdaten: nicht relevant) 0x07¹: Schreiben in Wirkenergiezähler ID (1Byte) des Messwertes (ID 3 8) Überlaufzähler (1Byte) Neuer Wert (4Byte) 		
	0x40 		

) Wird vom Energiemess-Modul 031-1PA00 nicht unterstützt.

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

Rückantwort

Byte	Wert	Beschreibung		
В0	0x40	 Bit 3 0: Status Kommunikation		
B1		■ CMD-ID aus der Anforderung.		
B2		 Bit 7 4: Länge der Nutzdaten abhängig von CMD-ID: 0x01: Rücksetzen aller Wirkenergiezähler (Länge Nutzdaten: 0Byte) 0x03: Rücksetzen von Statusbits: (Länge Nutzdaten: 4Byte) 0x04: Abfrage der Firmware-Version (Länge Nutzdaten: 10Byte) 0x06¹: Lesen des Holding Registers 0x07¹: Schreiben in Wirkenergiezähler 		
		■ Bit 3 0: DS-ID (nicht relevant)		
B3		■ Sammelstatus ∜ Kap. 3.27.7.3 "Sammelstatus" Seite 335		
D00 D11		 Nutzdaten abhängig von CMD-ID: 0x01: Rücksetzen aller Wirkenergiezähler (Nutzdaten: keine) 0x03: Rücksetzen von Statusbits: (Nutzdaten: 4Byte mit den entsprechend gesetzten Bits) 0x04: Abfrage der Firmware-Version (Nutzdaten: 10Byte mit der Versionsinformation) 0x06¹: Lesen des Holding Registers 0x07¹: Schreiben in Wirkenergiezähler		
1) Wird vom Energie	mess-Modul 031-1PA0	0 nicht unterstützt.		

Firmware-Version

- Byte 2 ... 0: Firmware-Version
- Byte 5 ... 3: Protokoll-Version
 - Byte 3: Major
 - Byte 4: Minor
 - Byte 5: Revision
- Byte 9 ... 6: Messchip-Version
 - Byte 6: Tag
 - Byte 7: Monat
 - Byte 8: Jahr (Hunderter)
 - Byte 9: Jahr (Einer)

Schreiben in Wirkenergiezähler (nicht 031-1PA00)

Setzen der Wirkenergiezähler L1 - L3 (Verbraucher, Erzeuger)

- Byte 0: ID des Messwertes, der geschrieben werden soll (*ID*: 3 ... 8).
- Byte 1: Überlaufzähler
- Byte 5 ... 2: Neuer Messwert

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

Beispiel "CMD Frame" In diesem Beispiel werden alle Statusbits zurückgesetzt.

Anforderung

Byte	Wert	Beschreibung
В0	0x40	Telegrammtyp "CMD Frame"
B1	0x03	CMD-ID: Rücksetzen von Statusbits
B2	0x40	Rücksetzen von Statusbits: (Länge Nutzdaten: 4Byte)
B3	0x00	Sammelstatus (nicht relevant).
D00	0xFF	Nutzdaten: Alle Statusbits zurücksetzen
D01	0xFF	
D02	0xFF	
D03	0xFF	

Byte	Wert	Beschreibung
В0	0x40	Telegrammtyp "CMD Frame" aus der Anforderung.
B1	0x03	CMD-ID aus der Anforderung.
B2	0x40	Länge der Nutzdaten aus der Anforderung.
B3	0x00	Sammelstatus: OK % Kap. 3.27.7.3 "Sammelstatus" Seite 335
D00	0xFF	Nutzdaten aus der Anforderung.
D01	0xFF	
D02	0xFF	
D03	0xFF	

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

3.27.7.4.6 Read Param

Dieser Telegrammtyp wird vom Energiemess-Modul 031-1PA00 nicht unterstützt.

Mit "Read Param" (0x60) können die Parameter über das Prozessimage gelesen werden.

Anforderung

Byte	Wert	Beschreibung
В0	0x60	 Bit 3 0: Fehlercode (nicht relevant) Bit 6 4: 110 Telegrammtyp "Read Param" Bit 7: reserviert
B1		■ IDx des Parameters, der gelesen werden soll. ∜ Kap. 3.27.5 "Parametrierdaten" Seite 320
B2	2	■ Bit 7 4: Länge der Nutzdaten (0)
		■ Bit 3 0: Datensatz-ID <i>DS-ID</i> (relevant für einmaliges Lesen)
B3		■ Sammelstatus (nicht relevant)
D00		■ Nutzdaten (nicht relevant)
D11		

Byte	Wert	Beschreibung
В0	0x60	 Bit 3 0: Status Kommunikation
B1		■ IDx des Parameters, der gelesen wurde.
B2		■ Bit 7 4: Länge der Nutzdaten (0)
		■ Bit 3 0: Datensatz-ID <i>DS-ID</i>
B3		■ Sammelstatus ∜ Kap. 3.27.7.3 "Sammelstatus" Seite 335
D00		Parameterwert der gelesen wurde.
D11		

031-1PAxx - Al1x 3Ph 230/400V > Prozessdatenkommunikation

3.27.7.5 Beispiel

Kommunikation

Anhand eines Beispiels soll die Kommunikation und die Abfrage der Statusbits (ID = 41) näher beschrieben werden.

Nr.	Anforderung	Rückantwort	Beschreibung
1	0x10 0x01 0x03 0x00		Es wird eine <i>ID</i> und eine <i>DS-ID</i> angefordert: z.B.: M 1-3
			M (ID)-(DS-ID)
3		0x10 0x01 0x43 0x01	M 1-3 signalisiert Frequenzüberschreitung.
		(4 Byte Daten)	
4	0x10 0x29 0x03 0x00		Abfrage der Statusbits M 41-3.
5		0x10 0x29 0x43 0x05	Frequenzüberschreitung und Temperaturüber-
		0x00 0x00 0x80 0x00	schreitung wird gemeldet.
6	0x10 0x29 0x04 0x00		Abfrage der Statusbits M 41-4.
7		0x10 0x29 0x44 0x05	Die Statusbits (<i>ID</i> = 41) wurden aktualisiert und
		0x00 0x00 0xA0 0x00	Temperaturüberschreitung wird gemeldet.
8	0x40 0x03 0x45 0x00		Rücksetzen der Statusbits (Frequenzüberschrei-
	0x00 0x00 0xA0 0x00		tung und Temperaturüberschreitung)
9		0x40 0x03 0x45 0x00	Statusbits wurden zurückgesetzt.
		0x00 0x00 0xA0 0x00	
10	0x10 0x29 0x05 0x00		Abfrage der Statusbits M 41-5.
11		0x10 0x29 0x45 0x00	Statusbits wurden zurückgesetzt.
		0x00 0x00 0x20 0x00	Temperaturüberschreitung wird gemeldet.

031-1PAxx - Al1x 3Ph 230/400V > Fehlermeldungen und Diagnose

3.27.8 Fehlermeldungen und Diagnose

3.27.8.1 Status- und Fehlermeldungen

Sammelstatus

§ Kap. 3.27.7.3 "Sammelstatus" Seite 335

Status Bits ■ 053-1PA10 ♥ "Status Bits" Seite 329

■ 053-1PA00 🤄 "Status Bits" Seite 333

3.27.8.2 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	71h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	03h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR CH7ERR	5	reserviert	00h			0Dh 11h
DIAG_US	4	μs-Ticker	00h			13h

031-1PAxx - Al1x 3Ph 230/400V > Fehlermeldungen und Diagnose

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0	
0	■ Bit 3 0: Modulklasse – 0101b Analogbaugruppe	
	 Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert 	

ERR_D Diagnose

Byte	Bit 7 0	
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert 	

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 03h)

CHERR Kanalfehler

Byte
0

031-1PAxx - Al1x 3Ph 230/400V > Fehlermeldungen und Diagnose

CHxERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x
	Bit 0: gesetzt bei Projektierungs- / ParametrierungsfehlerBit 7 1: reserviert

CH3ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1 μ s wieder bei 0 beginnt.

031-1PAxx - Al1x 3Ph 230/400V > VIPA Hantierungsbaustein

3.27.9 VIPA Hantierungsbaustein

Die VIPA-spezifischen Bausteine finden Sie im Service-Bereich auf www.vipa.com unter Downloads > VIPA LIB als Bibliothek "Device Specific - SW90LS0MA" zum Download. Die Bibliothek liegt als gepackte zip-Datei vor. Sobald Sie VIPA-spezifische Bausteine verwenden möchten, sind diese in Ihr Projekt zu importieren. Näheres hierzu finden Sie im Handbuch zu Ihrer Bausteinbibliothek. Für die Kommunikation kommen folgende Bausteine zum Einsatz:

Baustein	Symbol	Kommentar
UDT 325	EM_DATA_R1	Datenstruktur für FB 325
FB 325	EM_COM_R1	Kommunikation mit Energiemess-Modulen 031-1PAxx

Näheres zum Einsatz dieser Bausteine finden Sie im Handbuch "Device Specific - SW90LS0MA" auf www.vipa.com im "Service/Support" -Bereich unter "Handbücher → VIPA Lib".

Funktionsweise

- Für manche Messgrößen lassen sich Grenzwerte parametriert. Bei Über- bzw. Unterschreiten werden entsprechende Alarm-Status-Bits gesetzt. Das Modul unterstützt mehrere Kommandos (CMD). Beispielsweise lassen sich hiermit Alarm-Status-Bits wieder zurücksetzen.
- Mit dem Funktionsbaustein FB 325 und der zugehörigen Datenstruktur vom Typ UDT 325 können Sie Energie-Messwerte und Alarm-Status-Bits des Energiemess-Moduls lesen und Kommandos auf dem Modul ausführen. Hierbei kommuniziert der FB 325 über die zyklischen E/A-Daten (je 16 Byte) des Moduls, welche beim Aufruf des FB 325 entsprechend anzugeben sind.
- Die eigentliche Auftragsschnittstelle ist über die Datenstruktur vom Typ UDT 325 realisiert. Hierdurch ist eine einfache Ansteuerung und Auswertung beispielsweise über ein Touch Panel möglich.

Analogwert

4 Analoge Ausgabe

4.1 Allgemeines

Leitungen für Analogsignale

Für die Analogsignale müssen Sie geschirmte Leitungen verwenden. Hierdurch verringern Sie die Störbeeinflussung. Den Schirm der Analogleitungen sollten Sie an beiden Leitungsenden erden. Wenn Potenzialunterschiede zwischen den Leitungsenden bestehen, so kann ein Potenzialausgleichstrom fließen, der die Analogsignale stören könnte. In diesem Fall sollten Sie den Schirm nur an einem Leitungsende erden.

Anschließen von Lasten und Aktoren

Mit den Analogausgabe-Modulen können Sie Lasten und Aktoren mit Strom oder Spannung versorgen.

Bitte achten Sie beim Anschluss der Aktoren immer auf richtige Polarität! Lassen Sie die Ausgangsklemmen der nicht benutzten Kanäle unbeschaltet und stellen Sie im Hardware-Konfigurator von Siemens die Ausgabeart des Kanals auf "deaktiviert".

Parametrierung

Die Parametrierung über CPU, PROFIBUS und PROFINET erfolgt mittels Datensätze (DS). Die entsprechende Datensatz-Nr. finden Sie bei der jeweiligen Modulbeschreibung. Hier sind auch die Indizes (IX) bzw. Subindizes (SX) für CANopen bzw. für EtherCAT aufgeführt.

Diagnosefunktion

Die Module sind diagnosefähig. Folgende Fehlermeldungen können Sie über die Diagnose abrufen:

- Fehler in der Parametrierung
- Kurzschlusserkennung
- Drahtbrucherkennung

Abwechselndes Blinken der Kanal-Fehler LEDs

Das abwechselnde Blinken der Kanal-Fehler-LEDs von Kanal 0 und 1 zeigt einen Watchdog-Fehler aufgrund einer Systemüberlastung an. Starten Sie mit einem Power-Cycle Ihr System neu. Sollte der Fehler erneut auftreten, überprüfen Sie Konfiguration und Anschaltung und passen Sie diese ggf. an. Sollte der Fehler weiterhin bestehen kontaktieren Sie bitte unseren Support.

4.2 Analogwert

Darstellung von Analogwerten

Die Analogwerte werden ausschließlich in binärer Form verarbeitet. Hierbei wird eine binäre Wortvariable in ein analoges Prozesssignal gewandelt und über den entsprechenden Kanal ausgegeben. Die Analogwerte werden als Festpunktzahl im Zweierkomplement dargestellt.

Auflösung	Analogwert												
	High-Byte (Byte 0)								Low-Byte (Byte 1)				
Bitnummer	15	14 13 12 11 10 9 8 7 6 5 4 3						2	1	0			
Wertigkeit	VZ	214 213 212 211 210 29 28 27 26 25 24 23						2 ²	21	20			
12Bit	VZ	VZ Analogwert (Wort)								X	Χ	Χ	
15Bit	VZ	VZ Analogwert (Wort)											

Ausgabebereiche und Funktionsnummern

Auflösung

Bei einer Auflösung von 12Bit plus Vorzeichen-Bit sind die niederwertigen Stellen (3Bit)

irrelevant.

Vorzeichen-Bit (VZ) Bit 15 dient als Vorzeichenbit. Hierbei gilt:

■ Bit 15 = "0": → positiver Wert
■ Bit 15 = "1": → negativer Wert

4.3 Ausgabebereiche und Funktionsnummern

Allgemeines

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom jeweiligen Analog-Modul unterstützt werden. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

Ausgabebereiche

Spannung

0 ... 10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	$U = D \times 10$
Siemens	10V	27648	6C00h	Nennbereich	$U = D x \frac{10}{27648}$
S7-Format	5V	13824	3600h		11
(10h)	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	
0 10V	12,5V	20480	5000h	Übersteuerung	$U = D \times 10$
Siemens	10V	16384	4000h	Nennbereich	$U = D x \frac{10}{16384}$
S5-Format	5V	8192	2000h		11
(20h)	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	

Ausgabebereiche und Funktionsnummern

±10V

Ausgabebereich (FktNr.)	Spannung (U)	Dezimal (D)	Hex	Bereich	Umrechnung	
±10V	11,76V	32511	7EFFh	Übersteuerung	U = D x	
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$U = D x \frac{10}{27648}$	
(12h)	5V	13824	3600h		II.	
	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$	
	-5V	-13824	CA00h			
	-10V	-27648	9400h			
	-11,76V	-32512	8100h	Untersteuerung		
±10V	12,5V	20480	5000h	Übersteuerung	U - D × 10	
Siemens S5-Format	10V	16384	4000h	Nennbereich	$U = D \ x \ \frac{10}{16384}$	
(22h)	5V	8192	2000h		II.	
	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$	
	-5V	-8192	E000h			
	-10V	-16384	C000h			
	-12,5V	-20480	B000h	Untersteuerung		

Ausgabebereich

Strom

0 ... 20mA

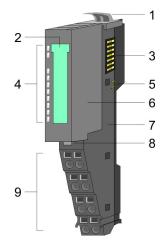
Ausgabebereich	Strom Dezimal Hex Bereich		Bereich	Umrechnung	
(FktNr.)	(I)	(D)			
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	20
Siemens	20mA	27648	6C00h	Nennbereich	$I = D x \frac{20}{27648}$
S7-Format	10mA	13824	3600h		
(31h)	0mA	0	0000h		$D = 27648 \ x \ \frac{I}{20}$
	Nicht möglich, wir	d auf 0mA begre	nzt.	Untersteuerung	20
0 20mA	25,00mA	20480	5000h	Übersteuerung	20
Siemens	20mA	16384	4000h	Nennbereich	$I = D x \frac{20}{16384}$
S5-Format	10mA	8192	2000h		
(41h)	0mA	0	0000h		$D = 16384 \ x \ \frac{I}{20}$
	Nicht möglich, wir	d auf 0mA begre	nzt.	Untersteuerung	20

Ausgabebereiche und Funktionsnummern

4 ... 20mA

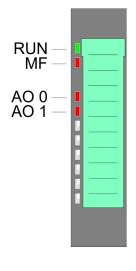
Ausgabebereich	Strom	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(1)	(D)				
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$I = D \times \frac{16}{27648} + 4$	
Siemens	20mA	27648	6C00h	Nennbereich	$1 - D \times \frac{1}{27648} + 4$	
S7-Format	12mA	13824	3600h		I-4	
(30h)	4mA	0	0000h		$D = 27648 \ x \ \frac{I-4}{16}$	
	0mA	-6912	E500h	Untersteuerung		
4 20mA	24,00mA	20480	5000h	Übersteuerung	$I = D \times \frac{16}{16384} + 4$	
Siemens	20mA	16384	4000h	Nennbereich	$1 - D \times \frac{16384}{16384} + 4$	
S5-Format	12mA	8192	2000h		I-4	
(40h)	4mA	0	0000h		$D = 16384 \ x \ \frac{1-4}{16}$	
	0mA	-4096	F000h	Untersteuerung		

032-1BB30 - AO 2x12Bit 0...10V


4.4 032-1BB30 - AO 2x12Bit 0...10V

Eigenschaften

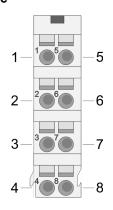
Das Elektronikmodul besitzt 2 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

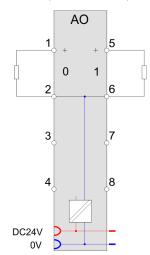

- 2 analoge Ausgänge
- Spannungsausgabe 0 ... 10V
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF rot	AO x ☐ rot	Beschreibung	
		X	Bus-Kommunikation ist OK Modul-Status ist OK	
		х	Bus-Kommunikation ist OK Modul-Status meldet Fehler	
		x	Bus-Kommunikation nicht möglich Modul-Status meldet Fehler	
		Χ	Fehler Busversorgungsspannung	
X	ZHz	X	Konfigurationsfehler & Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30	
•		•	Fehler Kanal x ■ Überlast, Kurzschluss ■ Fehler in der Parametrierung	
nicht relevant: X				

032-1BB30 - AO 2x12Bit 0...10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3			nicht belegt
4			nicht belegt
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7			nicht belegt
8			nicht belegt

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- ${\rm SX}\,$ $\,{\rm Subindex}\,$ für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h

032-1BB30 - AO 2x12Bit 0...10V > Technische Daten

4.4.1 Technische Daten

Artikelnr.	032-1BB30
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	0501 25D8
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	85 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	35 mA
Verlustleistung	1,2 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	-
Spannungsausgang Kurzschlussschutz	✓
Spannungsausgänge	✓
min. Bürdenwiderstand im Spannungsbereich	5 kΩ
max. kapazitive Last im Spannungsbereich	1 μF
max. Kurzschlussstrom des Spannungsausgangs	10 mA
Ausgangsspannungsbereiche	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,3%
Grundfehlergrenze Spannungsbereiche	+/-0,2%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 24V
Stromausgänge	-
max. Bürdenwiderstand im Strombereich	-
max. induktive Last im Strombereich	-
typ. Leerlaufspannung des Stromausgangs	-
Ausgangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche	-
Zerstörgrenze gegen von außen angelegte Spannungen	-
Einschwingzeit für ohmsche Last	1,5 ms
Einschwingzeit für kapazitive Last	2 ms
Einschwingzeit für induktive Last	-
Auflösung in Bit	12
Wandlungszeit	2 ms alle Kanäle
Ersatzwerte aufschaltbar	nein

032-1BB30 - AO 2x12Bit 0...10V > Technische Daten

Artikelnr.	032-1BB30
Ausgangsdatengröße	4 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	4
Parameterbytes	8
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	60 g
Gewicht inklusive Zubehör	60 g

032-1BB30 - AO 2x12Bit 0...10V > Parametrierdaten

Artikelnr.	032-1BB30
Gewicht Brutto	74 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.4.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
SHORT_EN	1	Kurzschlusserkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	10h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	10h	81h	3103h	04h

SHORT_EN Kurzschlusserkennung

Byte	Bit 7 0
0	 Bit 0: Kurzschlusserkennung Kanal 0 (1: an) Bit 1: Kurzschlusserkennung Kanal 1 (1: an) Bit 7 2: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1BB30 - AO 2x12Bit 0...10V > Diagnosedaten

0 ... 10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(U)	(D)				
0 10V	11,76V	32511	7EFFh	Übersteuerung	U - D x 10	
Siemens	10V	27648	6C00h	Nennbereich	$U = D x \frac{10}{27648}$	
S7-Format	5V	13824	3600h		17	
(10h)	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$	
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung		
0 10V	12,5V	20480	5000h	Übersteuerung	U - D x 10	
Siemens	10V	16384	4000h	Nennbereich	$U = D x \frac{10}{16384}$	
S5-Format	5V	8192	2000h		17	
(20h)	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$	
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung		

4.4.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Kurzschluss/Überlast (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah

032-1BB30 - AO 2x12Bit 0...10V > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	µs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	■ Bit 3 0: Modulklasse — 0101b Analogbaugruppe
	Bit 4: Kanalinformation vorhandenBit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

032-1BB30 - AO 2x12Bit 0...10V > Diagnosedaten

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0			
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 			

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0		
0	Kanalspezifische Fehler: Kanal x		
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 2 1: reserviert Bit 3: gesetzt bei Kurzschluss nach M Bit 7 4: reserviert 		

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

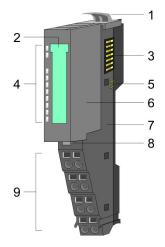
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

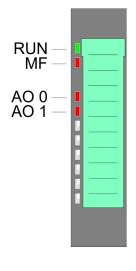
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

032-1BB40 - AO 2x12Bit 0(4)...20mA


4.5 032-1BB40 - AO 2x12Bit 0(4)...20mA

Eigenschaften

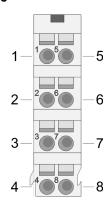
Das Elektronikmodul besitzt 2 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

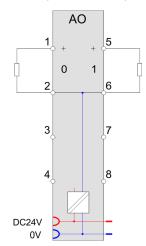

- 2 analoge Ausgänge
- Stromausgabe 0 ... 20mA; 4 ... 20mA
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF ■ rot	AO x ■ rot	Beschreibung
gruii	100	100	- · · · · · · · · · · · · · · · · · · ·
		X	Bus-Kommunikation ist OK
_		,	Modul-Status ist OK
_		X	Bus-Kommunikation ist OK
			Modul-Status meldet Fehler
		X	Bus-Kommunikation nicht möglich
		^	Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler & Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			■ Fehler in der Parametrierung
			Drahtbruch (falls parametriert)
nicht relevant: X			

032-1BB40 - AO 2x12Bit 0(4)...20mA

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3			nicht belegt
4			nicht belegt
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7			nicht belegt
8			nicht belegt

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- SX Subindex für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h

032-1BB40 - AO 2x12Bit 0(4)...20mA > Technische Daten

4.5.1 Technische Daten

Artikelnr.	032-1BB40
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	0502 25D8
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	85 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Verlustleistung	0,8 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	
Spannungsausgang Kurzschlussschutz	
Spannungsausgänge	
min. Bürdenwiderstand im Spannungsbereich	
max. kapazitive Last im Spannungsbereich	
max. Kurzschlussstrom des Spannungsausgangs	
Ausgangsspannungsbereiche	
Gebrauchsfehlergrenze Spannungsbereiche	
Grundfehlergrenze Spannungsbereiche	
Zerstörgrenze gegen von außen angelegte Spannungen	
Stromausgänge	✓
max. Bürdenwiderstand im Strombereich	350 Ω
max. induktive Last im Strombereich	10 mH
typ. Leerlaufspannung des Stromausgangs	12 V
Ausgangsstrombereiche	0 mA +20 mA
	+4 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-0,4% +/-0,5%
Grundfehlergrenze Strombereiche	+/-0,2% +/-0,3%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 12V (30V für 1s)
Einschwingzeit für ohmsche Last	0,25 ms
Einschwingzeit für kapazitive Last	-
Einschwingzeit für induktive Last	1,5 ms
Auflösung in Bit	12
Wandlungszeit	2 ms alle Kanäle

032-1BB40 - AO 2x12Bit 0(4)...20mA > Technische Daten

Artikelnr.	032-1BB40
Ersatzwerte aufschaltbar	nein
Ausgangsdatengröße	4 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	4
Parameterbytes	8
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g

032-1BB40 - AO 2x12Bit 0(4)...20mA > Parametrierdaten

Artikelnr.	032-1BB40
Gewicht inklusive Zubehör	61 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.5.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
WIBRK_EN	1	Drahtbrucherkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	3103h	04h

WIBRK_EN Drahtbrucherkennung

Sie können die Drahtbrucherkennung auch für den Stromausgabebereich 0 ... 20mA aktivieren. Um eine sichere Drahtbrucherkennung zu gewährleisten, muss der Dezimalwert für die Ausgabe \geq 100 sein.

Byte	Bit 7 0		
0	 Bit 0: Drahtbrucherkennung Kanal 0 (1: an) Bit 1: Drahtbrucherkennung Kanal 1 (1: an) Bit 7 2: reserviert 		

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1BB40 - AO 2x12Bit 0(4)...20mA > Parametrierdaten

0 ... 20mA

Ausgabebereich	Strom	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(I)	(D)				
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	20	
Siemens	20mA	27648	6C00h	Nennbereich	$I = D \ x \ \frac{20}{27648}$	
S7-Format	10mA	13824	3600h			
(31h)	0mA	0	0000h		$D = 27648 \ x \ \frac{I}{20}$	
	Nicht möglich, wird auf 0mA begrenzt.			Untersteuerung	20	
0 20mA	25,00mA	20480	5000h	Übersteuerung	20	
Siemens	20mA	16384	4000h	Nennbereich	$I = D x \frac{20}{16384}$	
S5-Format	10mA	8192	2000h			
(41h)	0mA	0	0000h		$D = 16384 \ x \ \frac{I}{20}$	
	Nicht möglich, wir	d auf 0mA begre	nzt.	Untersteuerung	20	

4 ... 20mA

Ausgabebereich	Strom	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(I)	(D)				
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$I = D \times \frac{16}{27648} + 4$	
Siemens	20mA	27648	6C00h	Nennbereich	$1 - D \times \frac{1}{27648} + 4$	
S7-Format	12mA	13824	3600h		$D = 27648 \ x \ \frac{I-4}{16}$	
(30h)	4mA	0	0000h			
	0mA	-6912	E500h	Untersteuerung		
4 20mA	24,00mA	20480	5000h	Übersteuerung	$I = D \times \frac{16}{16384} + 4$	
Siemens	20mA	16384	4000h	Nennbereich	$I = D \times \frac{1}{16384} + 4$	
S5-Format	12mA	8192	2000h		I-4	
(40h)	4mA	0	0000h		$D = 16384 \ x \ \frac{I-4}{16}$	
	0mA	-4096	F000h	Untersteuerung		

032-1BB40 - AO 2x12Bit 0(4)...20mA > Diagnosedaten

4.5.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Drahtbruch (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

032-1BB40 - AO 2x12Bit 0(4)...20mA > Diagnosedaten

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0				
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 				

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x
	Bit 0: gesetzt bei Projektierungs-/ParametrierungsfehlerBit 3 1: reserviert
	Bit 4: gesetzt bei Drahtbruch
	■ Bit 7 5: reserviert

032-1BB40 - AO 2x12Bit 0(4)...20mA > Diagnosedaten

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

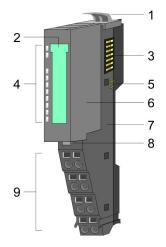
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

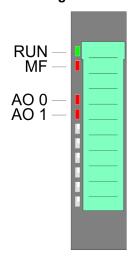
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

032-1BB70 - AO 2x12Bit ±10V


4.6 032-1BB70 - AO 2x12Bit ±10V

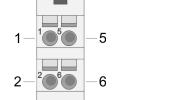
Eigenschaften

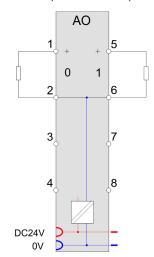
Das Elektronikmodul besitzt 2 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.


- 2 analoge Ausgänge
- Spannungsausgabe ±10V, 0 ... 10V
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen


Statusanzeige


RUN	MF	AO x	Beschreibung
grün	rot	rot	•
_		X	Bus-Kommunikation ist OK
_		^	Modul-Status ist OK
		Х	Bus-Kommunikation ist OK
		^	Modul-Status meldet Fehler
		X	Bus-Kommunikation nicht möglich
		^	Modul-Status meldet Fehler
		Χ	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			■ Überlast, Kurzschluss
			Fehler in der Parametrierung
nicht relevant: X			

032-1BB70 - AO 2x12Bit ±10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3			nicht belegt
4			nicht belegt
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7			nicht belegt
8			nicht belegt

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- SX Subindex für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h

032-1BB70 - AO 2x12Bit ±10V > Technische Daten

4.6.1 Technische Daten

Artikelnr.	032-1BB70
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	0505 25D8
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	60 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Verlustleistung	0,8 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	-
Spannungsausgang Kurzschlussschutz	✓
Spannungsausgänge	✓
min. Bürdenwiderstand im Spannungsbereich	5 kΩ
max. kapazitive Last im Spannungsbereich	1 μF
max. Kurzschlussstrom des Spannungsausgangs	10 mA
Ausgangsspannungsbereiche	-10 V +10 V 0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,3%
Grundfehlergrenze Spannungsbereiche	+/-0,2%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 24V
Stromausgänge	-
max. Bürdenwiderstand im Strombereich	-
max. induktive Last im Strombereich	-
typ. Leerlaufspannung des Stromausgangs	-
Ausgangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche	-
Zerstörgrenze gegen von außen angelegte Spannungen	-
Einschwingzeit für ohmsche Last	3 ms
Einschwingzeit für kapazitive Last	3 ms
Einschwingzeit für induktive Last	-
Auflösung in Bit	12
Wandlungszeit	2 ms alle Kanäle

032-1BB70 - AO 2x12Bit ±10V > Technische Daten

Artikelnr.	032-1BB70
Ersatzwerte aufschaltbar	nein
Ausgangsdatengröße	4 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	4
Parameterbytes	8
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	58 g

032-1BB70 - AO 2x12Bit ±10V > Parametrierdaten

Artikelnr.	032-1BB70
Gewicht inklusive Zubehör	58 g
Gewicht Brutto	73 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.6.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
SHORT_EN	1	Kurzschlusserkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	12h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	12h	81h	3103h	04h

SHORT_EN Kurzschlusserkennung

Byte	Bit 7 0
0	 Bit 0: Kurzschlusserkennung Kanal 0 (1: an) Bit 1: Kurzschlusserkennung Kanal 1 (1: an) Bit 7 2: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1BB70 - AO 2x12Bit ±10V > Parametrierdaten

±10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
±10V	11,76V	32511	7EFFh	Übersteuerung	U = D r 10
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$U = D x \frac{10}{27648}$
(12h)	5V	13824	3600h		11
	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$
	-5V	-13824	CA00h		
	-10V	-27648	9400h		
	-11,76V	-32512	8100h	Untersteuerung	
±10V	12,5V	20480	5000h	Übersteuerung	$U = D x \frac{10}{16384}$
Siemens S5-Format	10V	16384	4000h	Nennbereich	$C = D x \frac{16384}{}$
(22h)	5V	8192	2000h		11
	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	-5V	-8192	E000h		
	-10V	-16384	C000h		
	-12,5V	-20480	B000h	Untersteuerung	

0 ... 10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	$U = D \times \frac{10}{27648}$
Siemens	10V	27648	6C00h	Nennbereich	$C = D \times {27648}$
S7-Format	5V	13824	3600h		11
(10h)	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	
0 10V	12,5V	20480	5000h	Übersteuerung	U = D × 10
Siemens	10V	16384	4000h	Nennbereich	$U = D x \frac{10}{16384}$
S5-Format	5V	8192	2000h		17
(20h)	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	

032-1BB70 - AO 2x12Bit ±10V > Diagnosedaten

4.6.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnose-daten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Kurzschluss/Überlast (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

032-1BB70 - AO 2x12Bit ±10V > Diagnosedaten

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse – 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte
0

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0				
0	Kanalspezifische Fehler: Kanal x				
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 2 1: reserviert Bit 3: gesetzt bei Kurzschluss nach M Bit 7 4: reserviert 				

032-1BB70 - AO 2x12Bit ±10V > Diagnosedaten

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

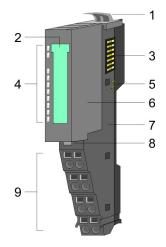
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

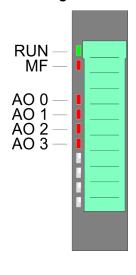
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

032-1BD30 - AO 4x12Bit 0...10V


4.7 032-1BD30 - AO 4x12Bit 0...10V

Eigenschaften

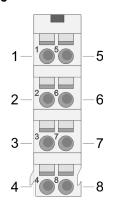
Das Elektronikmodul besitzt 4 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

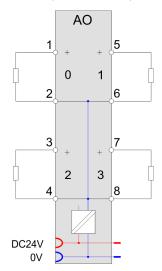

- 4 analoge Ausgänge
- Spannungsausgabe 0 ... 10V
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN	MF	AO x	Beschreibung
grün	rot	rot	
_		X	Bus-Kommunikation ist OK
		A	Modul-Status ist OK
		Х	Bus-Kommunikation ist OK
		^	Modul-Status meldet Fehler
		X	Bus-Kommunikation nicht möglich
		^	Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			■ Überlast, Kurzschluss
			■ Fehler in der Parametrierung
nicht relevan	t: X		

032-1BD30 - AO 4x12Bit 0...10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3	AO 2	Α	Kanal 2
4	AGND	Α	Masse der Kanäle
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7	AO 3	Α	Kanal 3
8	AGND	Α	Masse der Kanäle

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- SX Subindex für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h
+4	AO 2	2	Analogwert Kanal 2	6411h/s+2	03h
+6	AO 3	2	Analogwert Kanal 3	6411h/s+3	04h

032-1BD30 - AO 4x12Bit 0...10V > Technische Daten

4.7.1 Technische Daten

Artikelnr.	032-1BD30
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	0503 25E0
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	90 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	35 mA
Verlustleistung	1,2 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	-
Spannungsausgang Kurzschlussschutz	✓
Spannungsausgänge	✓
min. Bürdenwiderstand im Spannungsbereich	5 kΩ
max. kapazitive Last im Spannungsbereich	1 μF
max. Kurzschlussstrom des Spannungsausgangs	10 mA
Ausgangsspannungsbereiche	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,3%
Grundfehlergrenze Spannungsbereiche	+/-0,2%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 24V
Stromausgänge	-
max. Bürdenwiderstand im Strombereich	-
max. induktive Last im Strombereich	-
typ. Leerlaufspannung des Stromausgangs	-
Ausgangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche	-
Zerstörgrenze gegen von außen angelegte Spannungen	-
Einschwingzeit für ohmsche Last	1,5 ms
Einschwingzeit für kapazitive Last	2 ms
Einschwingzeit für induktive Last	-
Auflösung in Bit	12
Wandlungszeit	2 ms alle Kanäle
Ersatzwerte aufschaltbar	nein

032-1BD30 - AO 4x12Bit 0...10V > Technische Daten

Artikelnr.	032-1BD30
Ausgangsdatengröße	8 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	
zwischen den Kanälen in Gruppen zu	+
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	8
Parameterbytes	10
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g
Gewicht inklusive Zubehör	61 g

032-1BD30 - AO 4x12Bit 0...10V > Parametrierdaten

Artikelnr.	032-1BD30
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.7.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
SHORT_EN	1	Kurzschlusserkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	10h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	10h	81h	3103h	04h
CH2FN	1	Funktionsnummer Kanal 2	10h	82h	3104h	05h
CH3FN	1	Funktionsnummer Kanal 3	10h	83h	3105h	06h

SHORT_EN Kurzschlusserkennung

Byte	Bit 7 0
0	 Bit 0: Kurzschlusserkennung Kanal 0 (1: an) Bit 1: Kurzschlusserkennung Kanal 1 (1: an) Bit 2: Kurzschlusserkennung Kanal 2 (1: an) Bit 3: Kurzschlusserkennung Kanal 3 (1: an) Bit 7 4: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1BD30 - AO 4x12Bit 0...10V > Diagnosedaten

0 ... 10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	U - D x 10
Siemens	10V	27648	6C00h	Nennbereich	$U = D x \frac{10}{27648}$
S7-Format	5V	13824	3600h		17
(10h)	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	
0 10V	12,5V	20480	5000h	Übersteuerung	U - D x 10
Siemens	10V	16384	4000h	Nennbereich	$U = D x \frac{10}{16384}$
S5-Format	5V	8192	2000h		17
(20h)	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	

4.7.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Kurzschluss/Überlast (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah

032-1BD30 - AO 4x12Bit 0...10V > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0		
0	■ Bit 3 0: Modulklasse – 0101b Analogbaugruppe		
	■ Bit 4: Kanalinformation vorhanden ■ Bit 7 5: reserviert		

ERR_D Diagnose

Byte	Bit 7 0
0	■ Bit 2 0: reserviert
	■ Bit 3: gesetzt bei internem Diagnosepufferüberlauf
	■ Bit 4: gesetzt bei internem Kommunikationsfehler
	■ Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

032-1BD30 - AO 4x12Bit 0...10V > Diagnosedaten

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 2 1: reserviert Bit 3: gesetzt bei Kurzschluss nach M Bit 7 4: reserviert

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

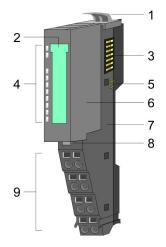
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

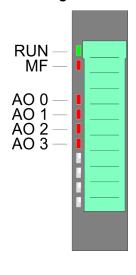
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

032-1BD40 - AO 4x12Bit 0(4)...20mA


4.8 032-1BD40 - AO 4x12Bit 0(4)...20mA

Eigenschaften

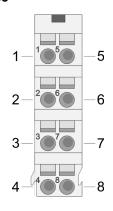
Das Elektronikmodul besitzt 4 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

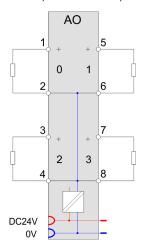

- 4 analoge Ausgänge
- Stromausgabe 0...20mA; 4...20mA
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN	MF	AO x	Beschreibung	
grün	rot	rot	Describing	
		X	Bus-Kommunikation ist OK	
		^	Modul-Status ist OK	
	_	X	Bus-Kommunikation ist OK	
		^	Modul-Status meldet Fehler	
	_	X	Bus-Kommunikation nicht möglich	
		X	Modul-Status meldet Fehler	
		Χ	Fehler Busversorgungsspannung	
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30	
			Fehler Kanal x	
			Fehler in der ParametrierungDrahtbruch (falls parametriert)	
nicht relevant: X				

032-1BD40 - AO 4x12Bit 0(4)...20mA

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3	AO 2	Α	Kanal 2
4	AGND	Α	Masse der Kanäle
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7	AO 3	Α	Kanal 3
8	AGND	Α	Masse der Kanäle

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- ${\rm SX}\,$ $\,{\rm Subindex}\,$ für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h
+0	AO 2	2	Analogwert Kanal 2	6411h/s+2	03h
+2	AO 3	2	Analogwert Kanal 3	6411h/s+3	04h

032-1BD40 - AO 4x12Bit 0(4)...20mA > Technische Daten

4.8.1 Technische Daten

Artikelnr.	032-1BD40
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	0504 25E0
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	90 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Verlustleistung	0,8 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	
Spannungsausgang Kurzschlussschutz	
Spannungsausgänge	
min. Bürdenwiderstand im Spannungsbereich	
max. kapazitive Last im Spannungsbereich	
max. Kurzschlussstrom des Spannungsausgangs	
Ausgangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche	-
Zerstörgrenze gegen von außen angelegte Spannungen	-
Stromausgänge	✓
max. Bürdenwiderstand im Strombereich	350 Ω
max. induktive Last im Strombereich	10 mH
typ. Leerlaufspannung des Stromausgangs	12 V
Ausgangsstrombereiche	0 mA +20 mA
	+4 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-0,4% +/-0,5%
Grundfehlergrenze Strombereiche	+/-0,2% +/-0,3%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 12V (30V für 1s)
Einschwingzeit für ohmsche Last	0,25 ms
Einschwingzeit für kapazitive Last	-
Einschwingzeit für induktive Last	1,5 ms
Auflösung in Bit	12
Wandlungszeit	2 ms alle Kanäle

032-1BD40 - AO 4x12Bit 0(4)...20mA > Technische Daten

Artikelnr.	032-1BD40
Ersatzwerte aufschaltbar	nein
Ausgangsdatengröße	8 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	8
Parameterbytes	10
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g

032-1BD40 - AO 4x12Bit 0(4)...20mA > Parametrierdaten

Artikelnr.	032-1BD40
Gewicht inklusive Zubehör	61 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.8.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
WIBRK_EN	1	Drahtbrucherkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	3103h	04h
CH2FN	1	Funktionsnummer Kanal 2	31h	82h	3104h	05h
CH3FN	1	Funktionsnummer Kanal 3	31h	83h	3105h	06h

WIBRK_EN Drahtbrucherkennung

Sie können die Drahtbrucherkennung auch für den Stromausgabebereich 0 ... 20mA aktivieren. Um eine sichere Drahtbrucherkennung zu gewährleisten, muss der Dezimalwert für die Ausgabe ≥ 100 sein.

Byte	Bit 7 0
0	 Bit 0: Drahtbrucherkennung Kanal 0 (1: an) Bit 1: Drahtbrucherkennung Kanal 1 (1: an) Bit 2: Drahtbrucherkennung Kanal 2 (1: an) Bit 3: Drahtbrucherkennung Kanal 3 (1: an) Bit 7 4: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1BD40 - AO 4x12Bit 0(4)...20mA > Parametrierdaten

0 ... 20mA

Ausgabebereich	Strom	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(I)	(D)			
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	20
Siemens	20mA	27648	6C00h	Nennbereich	$I = D \ x \ \frac{20}{27648}$
S7-Format	10mA	13824	3600h		
(31h)	0mA	0	0000h		$D = 27648 \ x \ \frac{I}{20}$
	Nicht möglich, wir	d auf 0mA begre	nzt.	Untersteuerung	20
0 20mA	25,00mA	20480	5000h	Übersteuerung	20
Siemens	20mA	16384	4000h	Nennbereich	$I = D x \frac{20}{16384}$
S5-Format	10mA	8192	2000h		
(41h)	0mA	0	0000h		$D = 16384 \ x \ \frac{I}{20}$
	Nicht möglich, wir	d auf 0mA begre	nzt.	Untersteuerung	20

4 ... 20mA

Ausgabebereich	Strom	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(I)	(D)			
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$I = D \times \frac{16}{27648} + 4$
Siemens	20mA	27648	6C00h	Nennbereich	27648
S7-Format	12mA	13824	3600h		I-4
(30h)	4mA	0	0000h		$D = 27648 \ x \ \frac{1-4}{16}$
	0mA	-6912	E500h	Untersteuerung	
4 20mA	24,00mA	20480	5000h	Übersteuerung	$I = D \times \frac{16}{16384} + 4$
Siemens	20mA	16384	4000h	Nennbereich	$1 - D \times \frac{1}{16384} + 4$
S5-Format	12mA	8192	2000h		I-4
(40h)	4mA	0	0000h		$D = 16384 \ x \ \frac{1-4}{16}$
	0mA	-4096	F000h	Untersteuerung	

032-1BD40 - AO 4x12Bit 0(4)...20mA > Diagnosedaten

4.8.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Drahtbruch (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

032-1BD40 - AO 4x12Bit 0(4)...20mA > Diagnosedaten

MODTYP Modulinformation

Byte	Bit 7 0	
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert 	

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0	
0	Kanalspezifische Fehler: Kanal x:	
	Bit 0: gesetzt bei Projektierungs-/ParametrierungsfehlerBit 3 1: reserviert	
	■ Bit 4: gesetzt bei Drahtbruch	
	■ Bit 7 5: reserviert	

032-1BD40 - AO 4x12Bit 0(4)...20mA > Diagnosedaten

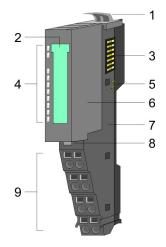
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

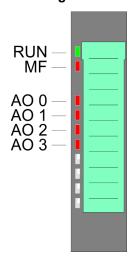
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1 μ s wieder bei 0 beginnt.

032-1BD70 - AO 4x12Bit ±10V


4.9 032-1BD70 - AO 4x12Bit ±10V

Eigenschaften

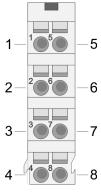
Das Elektronikmodul besitzt 4 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

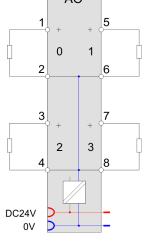

- 4 analoge Ausgänge
- Spannungsausgabe ±10V, 0 ... 10V
- Diagnosefunktion
- 12Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige


RUN	MF	AO x	Beschreibung		
grün	rot	rot	•		
_		X	Bus-Kommunikation ist OK		
_		X	Modul-Status ist OK		
		X	Bus-Kommunikation ist OK		
		^	Modul-Status meldet Fehler		
	•	x	Bus-Kommunikation nicht möglich		
			Modul-Status meldet Fehler		
		Χ	Fehler Busversorgungsspannung		
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30		
			Fehler Kanal x		
			■ Überlast, Kurzschluss		
			Fehler in der Parametrierung		
nicht relevant: X					


Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

032-1BD70 - AO 4x12Bit ±10V

Anschlüsse

AO

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3	AO 2	Α	Kanal 2
4	AGND	Α	Masse der Kanäle
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7	AO 3	Α	Kanal 3
8	AGND	Α	Masse der Kanäle

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- SX Subindex für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h
+4	AO 2	2	Analogwert Kanal 2	6411h/s+2	03h
+6	AO 3	2	Analogwert Kanal 3	6411h/s+3	04h

032-1BD70 - AO 4x12Bit ±10V > Technische Daten

4.9.1 Technische Daten

	032-1BD70
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	0506 25E0
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	60 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Verlustleistung	0,8 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	
Spannungsausgang Kurzschlussschutz	✓
Spannungsausgänge	✓
min. Bürdenwiderstand im Spannungsbereich	5 kΩ
max. kapazitive Last im Spannungsbereich	1 μF
max. Kurzschlussstrom des Spannungsausgangs	10 mA
Ausgangsspannungsbereiche	-10 V +10 V 0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,3%
Grundfehlergrenze Spannungsbereiche	+/-0,2%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 24V
Stromausgänge	-
max. Bürdenwiderstand im Strombereich	-
max. induktive Last im Strombereich	-
typ. Leerlaufspannung des Stromausgangs	-
Ausgangsstrombereiche	
Gebrauchsfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche	
Zerstörgrenze gegen von außen angelegte Spannungen	
Einschwingzeit für ohmsche Last	3 ms
Einschwingzeit für kapazitive Last	3 ms
Einschwingzeit für induktive Last	
Auflösung in Bit	12
Wandlungszeit	2 ms alle Kanäle

032-1BD70 - AO 4x12Bit ±10V > Technische Daten

Artikelnr.	032-1BD70
Ersatzwerte aufschaltbar	nein
Ausgangsdatengröße	8 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	8
Parameterbytes	10
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	62 g

032-1BD70 - AO 4x12Bit ±10V > Parametrierdaten

Artikelnr.	032-1BD70
Gewicht inklusive Zubehör	62 g
Gewicht Brutto	76 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.9.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
SHORT_EN	1	Kurzschlusserkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	12h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	12h	81h	3103h	04h
CH2FN	1	Funktionsnummer Kanal 2	12h	82h	3104h	05h
CH3FN	1	Funktionsnummer Kanal 3	12h	83h	3105h	06h

SHORT_EN Kurzschlusserkennung

Byte	Bit 7 0
0	 Bit 0: Kurzschlusserkennung Kanal 0 (1: an) Bit 1: Kurzschlusserkennung Kanal 1 (1: an) Bit 2: Kurzschlusserkennung Kanal 2 (1: an) Bit 3: Kurzschlusserkennung Kanal 3 (1: an) Bit 7 4: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1BD70 - AO 4x12Bit ±10V > Parametrierdaten

±10V

Ausgabebereich (FktNr.)	Spannung (U)	Dezimal (D)	Hex	Bereich	Umrechnung
±10V	11,76V	32511	7EFFh	Übersteuerung	U - D × 10
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$U = D x \frac{10}{27648}$
(12h)	5V	13824	3600h		II.
	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$
	-5V	-13824	CA00h		
	-10V	-27648	9400h		
	-11,76V	-32512	8100h	Untersteuerung	
±10V	12,5V	20480	5000h	Übersteuerung	U - D × 10
Siemens S5-Format	10V	16384	4000h	Nennbereich	$U = D x \frac{10}{16384}$
(22h)	5V	8192	2000h		II.
	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	-5V	-8192	E000h		
	-10V	-16384	C000h		
	-12,5V	-20480	B000h	Untersteuerung	

0 ... 10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(U)	(D)				
0 10V	11,76V	32511	7EFFh	Übersteuerung	$U = D \times \frac{10}{27648}$	
Siemens	10V	27648	6C00h	Nennbereich	$C = D \times {27648}$	
S7-Format	5V	13824	3600h		11	
(10h)	0V	0	0000h		$D = 27648 \ x \ \frac{0}{10}$	
	Nicht möglich, wird auf 0V begrenzt.			Untersteuerung		
0 10V	12,5V	20480	5000h	Übersteuerung	U = D × 10	
Siemens	10V	16384	4000h	Nennbereich	$U = D x \frac{10}{16384}$	
S5-Format	5V	8192	2000h		17	
(20h)	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$	
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung		

032-1BD70 - AO 4x12Bit ±10V > Diagnosedaten

4.9.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Kurzschluss/Überlast (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

032-1BD70 - AO 4x12Bit ±10V > Diagnosedaten

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse – 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0			
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert 			

CHTYP Kanaltyp

Byte	Bit 7 0					
0	 ■ Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler ■ Bit 7: reserviert 					

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0			
0	Kanalspezifische Fehler: Kanal x:			
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 2 1: reserviert 			
	■ Bit 3: Kurzschluss nach M			
	■ Bit 7 4: reserviert			

032-1BD70 - AO 4x12Bit ±10V > Diagnosedaten

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

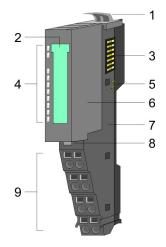
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

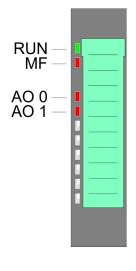
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

032-1CB30 - AO 2x16Bit 0...10V


4.10 032-1CB30 - AO 2x16Bit 0...10V

Eigenschaften

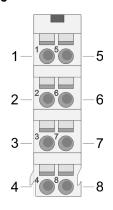
Das Elektronikmodul besitzt 2 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

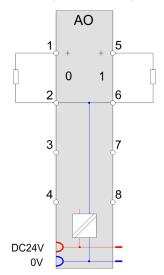

- 2 analoge Ausgänge
- Spannungsausgabe 0 ... 10V
- Diagnosefunktion
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN	MF	AO x	Beschreibung
grün	rot	rot	
_		Х	Bus-Kommunikation ist OK
			Modul-Status ist OK
		X	Bus-Kommunikation ist OK
		^	Modul-Status meldet Fehler
		Х	Bus-Kommunikation nicht möglich
		^	Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			■ Überlast, Kurzschluss
			■ Fehler in der Parametrierung
nicht relevant: X			

032-1CB30 - AO 2x16Bit 0...10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3			nicht belegt
4			nicht belegt
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7			nicht belegt
8			nicht belegt

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- SX Subindex für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h

032-1CB30 - AO 2x16Bit 0...10V > Technische Daten

4.10.1 Technische Daten

Artikelnr.	032-1CB30
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	0507 2558
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	60 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Verlustleistung	0,8 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	
Spannungsausgang Kurzschlussschutz	✓
Spannungsausgänge	✓
min. Bürdenwiderstand im Spannungsbereich	5 kΩ
max. kapazitive Last im Spannungsbereich	1 μF
max. Kurzschlussstrom des Spannungsausgangs	10 mA
Ausgangsspannungsbereiche	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,2%
Grundfehlergrenze Spannungsbereiche	+/-0,1%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 24V
Stromausgänge	-
max. Bürdenwiderstand im Strombereich	-
max. induktive Last im Strombereich	-
typ. Leerlaufspannung des Stromausgangs	-
Ausgangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche	-
Zerstörgrenze gegen von außen angelegte Spannungen	-
Einschwingzeit für ohmsche Last	150 µs
Einschwingzeit für kapazitive Last	1 ms
Einschwingzeit für induktive Last	-
Auflösung in Bit	16
Wandlungszeit	200 μs alle Kanäle
Ersatzwerte aufschaltbar	nein

032-1CB30 - AO 2x16Bit 0...10V > Technische Daten

Artikelnr.	032-1CB30
Ausgangsdatengröße	4 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	4
Parameterbytes	8
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g
Gewicht inklusive Zubehör	61 g

032-1CB30 - AO 2x16Bit 0...10V > Parametrierdaten

Artikelnr.	032-1CB30
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.10.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
SHORT_EN	1	Kurzschlusserkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	10h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	10h	81h	3103h	04h

SHORT_EN Kurzschlusserkennung

Byte	Bit 7 0	
0	 Bit 0: Kurzschlusserkennung Kanal 0 (1: an) Bit 1: Kurzschlusserkennung Kanal 1 (1: an) Bit 7 2: reserviert 	

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1CB30 - AO 2x16Bit 0...10V > Diagnosedaten

0 ... 10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	$U = D \times \frac{10}{27648}$
Siemens	10V	27648	6C00h	Nennbereich	$C = D \times {27648}$
S7-Format	5V	13824	3600h		17
(10h)	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	
0 10V	12,5V	20480	5000h	Übersteuerung	$U = D \times 10$
Siemens	10V	16384	4000h	Nennbereich	$U = D \times \frac{10}{16384}$
S5-Format	5V	8192	2000h		17
(20h)	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	

4.10.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnose-daten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Kurzschluss/Überlast (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah

032-1CB30 - AO 2x16Bit 0...10V > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	µs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0						
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert 						

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

032-1CB30 - AO 2x16Bit 0...10V > Diagnosedaten

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0				
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 				

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0				
0	Kanalspezifische Fehler: Kanal x				
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 2 1: reserviert Bit 3: gesetzt bei Kurzschluss nach M Bit 7 4: reserviert 				

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

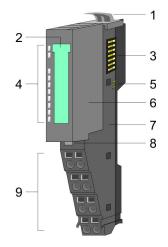
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

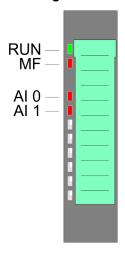
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

032-1CB40 - AO 2x16Bit 0(4)...20mA


4.11 032-1CB40 - AO 2x16Bit 0(4)...20mA

Eigenschaften

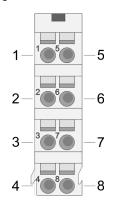
Das Elektronikmodul besitzt 2 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

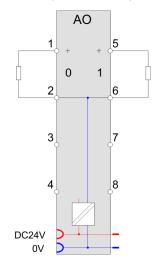

- 2 analoge Ausgänge
- Stromausgabe 0 ... 20mA; 4 ... 20mA
- Diagnosefunktion
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF ■ rot	AO x ■ rot	Beschreibung
gruii	100	100	- · · · · · · · · · · · · · · · · · · ·
		X	Bus-Kommunikation ist OK
_			Modul-Status ist OK
_		Χ	Bus-Kommunikation ist OK
		^	Modul-Status meldet Fehler
		X	Bus-Kommunikation nicht möglich
		^	Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler & Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			■ Fehler in der Parametrierung
			Drahtbruch (falls parametriert)
nicht relevant: X			

032-1CB40 - AO 2x16Bit 0(4)...20mA

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3			nicht belegt
4			nicht belegt
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7			nicht belegt
8			nicht belegt

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- SX Subindex für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h

032-1CB40 - AO 2x16Bit 0(4)...20mA > Technische Daten

4.11.1 Technische Daten

Artikelnr.	032-1CB40
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	050B 25D8
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	60 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	15 mA
Verlustleistung	0,7 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	
Spannungsausgang Kurzschlussschutz	
Spannungsausgänge	,
min. Bürdenwiderstand im Spannungsbereich	
max. kapazitive Last im Spannungsbereich	
max. Kurzschlussstrom des Spannungsausgangs	
Ausgangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche	-
Zerstörgrenze gegen von außen angelegte Spannungen	-
Stromausgänge	✓
max. Bürdenwiderstand im Strombereich	350 Ω
max. induktive Last im Strombereich	10 mH
typ. Leerlaufspannung des Stromausgangs	12 V
Ausgangsstrombereiche	0 mA +20 mA
	+4 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-0,2%
Grundfehlergrenze Strombereiche	+/-0,1%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 12V (30V für 1s)
Einschwingzeit für ohmsche Last	0,25 ms
Einschwingzeit für kapazitive Last	-
Einschwingzeit für induktive Last	1,5 ms
Auflösung in Bit	16
Wandlungszeit	400 μs alle Kanäle

032-1CB40 - AO 2x16Bit 0(4)...20mA > Technische Daten

Artikelnr.	032-1CB40
Ersatzwerte aufschaltbar	nein
Ausgangsdatengröße	4 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	4
Parameterbytes	8
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g

032-1CB40 - AO 2x16Bit 0(4)...20mA > Parametrierdaten

Artikelnr.	032-1CB40
Gewicht inklusive Zubehör	61 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.11.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
WIBRK_EN	1	Drahtbrucherkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	3103h	04h

WIBRK_EN Drahtbrucherkennung

Byte	Bit 7 0
0	 Bit 0: Drahtbrucherkennung Kanal 0 (1: an) Bit 1: Drahtbrucherkennung Kanal 1 (1: an) Bit 7 2: reserviert

Bitte beachten Sie, dass bei aktivierter Drahtbrucherkennung es im Ausgabebereich 0...20mA bei der Unterschreitung von 40μA (100 Digits) zu sporadischen Drahtbruchmeldungen kommen kann!

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1CB40 - AO 2x16Bit 0(4)...20mA > Parametrierdaten

0 ... 20mA

Ausgabebereich	Strom	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(I)	(D)			
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	20
Siemens	20mA	27648	6C00h	Nennbereich	$I = D \ x \ \frac{20}{27648}$
S7-Format	10mA	13824	3600h		
(31h)	0mA	0	0000h		$D = 27648 \ x \ \frac{I}{20}$
	Nicht möglich, wir	d auf 0mA begre	nzt.	Untersteuerung	20
0 20mA	25,00mA	20480	5000h	Übersteuerung	20
Siemens	20mA	16384	4000h	Nennbereich	$I = D x \frac{20}{16384}$
S5-Format	10mA	8192	2000h		
(41h)	0mA	0	0000h		$D = 16384 \ x \ \frac{I}{20}$
	Nicht möglich, wir	d auf 0mA begre	nzt.	Untersteuerung	20

4 ... 20mA

Ausgabebereich	Strom	Dezimal	Hex	Bereich	Umrechnung	
(FktNr.)	(I)	(D)				
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$I = D \times \frac{16}{27648} + 4$	
Siemens	20mA	27648	6C00h	Nennbereich	$1 - D \times \frac{1}{27648} + 4$	
S7-Format	12mA	13824	3600h		I-4	
(30h)	4mA	0	0000h		$D = 27648 \ x \ \frac{I-4}{16}$	
	0mA	-6912	E500h	Untersteuerung		
4 20mA	24,00mA	20480	5000h	Übersteuerung	$I = D \times \frac{16}{16384} + 4$	
Siemens	20mA	16384	4000h	Nennbereich	$1 - D \times \frac{1}{16384} + 4$	
S5-Format	12mA	8192	2000h		I-4	
(40h)	4mA	0	0000h		$D = 16384 \ x \ \frac{I-4}{16}$	
	0mA	-4096	F000h	Untersteuerung		

032-1CB40 - AO 2x16Bit 0(4)...20mA > Diagnosedaten

4.11.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Drahtbruch (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

032-1CB40 - AO 2x16Bit 0(4)...20mA > Diagnosedaten

MODTYP Modulinforma-

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0		
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert 		

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 3 1: reserviert Bit 4: gesetzt bei Drahtbruch Bit 7 5: reserviert

032-1CB40 - AO 2x16Bit 0(4)...20mA > Diagnosedaten

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

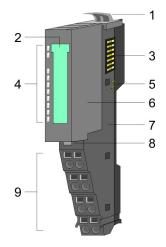
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

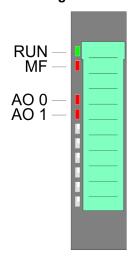
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

032-1CB70 - AO 2x16Bit ±10V


4.12 032-1CB70 - AO 2x16Bit ±10V

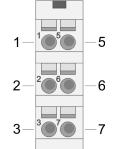
Eigenschaften

Das Elektronikmodul besitzt 2 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.


- 2 analoge Ausgänge
- Spannungsausgabe ±10V, 0 ... 10V
- Diagnosefunktion
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen


Statusanzeige

RUN	MF	AO x	Beschreibung
grün	rot	rot	
_		X	Bus-Kommunikation ist OK
		A	Modul-Status ist OK
		x	Bus-Kommunikation ist OK
			Modul-Status meldet Fehler
		Х	Bus-Kommunikation nicht möglich
		^	Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			■ Überlast, Kurzschluss
			■ Fehler in der Parametrierung
nicht relevant: X			

032-1CB70 - AO 2x16Bit ±10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3			nicht belegt
4			nicht belegt
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7			nicht belegt
8			nicht belegt

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- SX Subindex für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h

032-1CB70 - AO 2x16Bit ±10V > Technische Daten

4.12.1 Technische Daten

Artikelnr.	032-1CB70
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	0508 2558
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	60 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Verlustleistung	0,8 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	2
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	-
Spannungsausgang Kurzschlussschutz	✓
Spannungsausgänge	✓
min. Bürdenwiderstand im Spannungsbereich	5 kΩ
max. kapazitive Last im Spannungsbereich	1 μF
max. Kurzschlussstrom des Spannungsausgangs	10 mA
Ausgangsspannungsbereiche	-10 V +10 V 0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,2%
Grundfehlergrenze Spannungsbereiche	+/-0,1%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 24V
Stromausgänge	-
max. Bürdenwiderstand im Strombereich	-
max. induktive Last im Strombereich	-
typ. Leerlaufspannung des Stromausgangs	-
Ausgangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche	-
Zerstörgrenze gegen von außen angelegte Spannungen	-
Einschwingzeit für ohmsche Last	300 μs
Einschwingzeit für kapazitive Last	3 ms
Einschwingzeit für induktive Last	-
Auflösung in Bit	16
Wandlungszeit	200 μs alle Kanäle

032-1CB70 - AO 2x16Bit ±10V > Technische Daten

Artikelnr.	032-1CB70
Ersatzwerte aufschaltbar	nein
Ausgangsdatengröße	4 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	4
Parameterbytes	8
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	60 g

032-1CB70 - AO 2x16Bit ±10V > Parametrierdaten

Artikelnr.	032-1CB70
Gewicht inklusive Zubehör	60 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.12.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
SHORT_EN	1	Kurzschlusserkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	12h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	12h	81h	3103h	04h

SHORT_EN Kurzschlusserkennung

Byte	Bit 7 0		
0	 Bit 0: Kurzschlusserkennung Kanal 0 (1: an) Bit 1: Kurzschlusserkennung Kanal 1 (1: an) Bit 7 2: reserviert 		

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1CB70 - AO 2x16Bit ±10V > Parametrierdaten

±10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
±10V	11,76V	32511	7EFFh	Übersteuerung	U = D r 10
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$U = D x \frac{10}{27648}$
(12h)	5V	13824	3600h		$D = 27648 \ x \ \frac{U}{10}$
	0V	0	0000h		
	-5V	-13824	CA00h		
	-10V	-27648	9400h		
	-11,76V	-32512	8100h	Untersteuerung	
±10V	12,5V	20480	5000h	Übersteuerung	$U = D x \frac{10}{16384}$
Siemens S5-Format	10V	16384	4000h	Nennbereich	$C = D x \frac{16384}{}$
(22h)	5V	8192	2000h		11
	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	-5V	-8192	E000h		
	-10V	-16384	C000h		
	-12,5V	-20480	B000h	Untersteuerung	

0 ... 10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	$U = D \times \frac{10}{27648}$
Siemens	10V	27648	6C00h	Nennbereich	$C = D \times {27648}$
S7-Format	5V	13824	3600h		11
(10h)	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	
0 10V	12,5V	20480	5000h	Übersteuerung	U = D × 10
Siemens	10V	16384	4000h	Nennbereich	$U = D x \frac{10}{16384}$
S5-Format	5V	8192	2000h		17
(20h)	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	

032-1CB70 - AO 2x16Bit ±10V > Diagnosedaten

4.12.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Kurzschluss/Überlast (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR CH7ERR	6	reserviert	00h			0Ch 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

032-1CB70 - AO 2x16Bit ±10V > Diagnosedaten

MODTYP Modulinforma-

Byte	Bit 7 0			
0	■ Bit 3 0: Modulklasse			
	 0101b Analogbaugruppe 			
	Bit 4: Kanalinformation vorhanden			
	■ Bit 7 5: reserviert			

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 ■ Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler ■ Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 02h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 7 2: reserviert

CH0ERR / CH1ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 2 1: reserviert Bit 3: gesetzt bei Kurzschluss nach M Bit 7 4: reserviert

032-1CB70 - AO 2x16Bit ±10V > Diagnosedaten

CH2ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

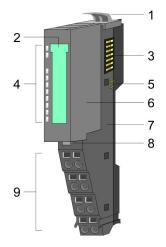
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

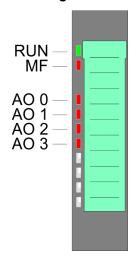
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

032-1CD30 - AO 4x16Bit 0...10V


4.13 032-1CD30 - AO 4x16Bit 0...10V

Eigenschaften

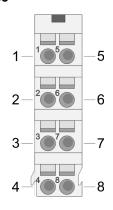
Das Elektronikmodul besitzt 4 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

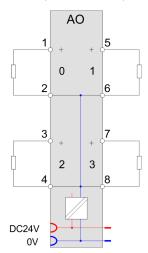

- 4 analoge Ausgänge
- Spannungsausgabe 0 ... 10V
- Diagnosefunktion
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN	MF	AO x	Beschreibung		
grün	rot	rot	•		
_		X	Bus-Kommunikation ist OK		
_		X	Modul-Status ist OK		
		X	Bus-Kommunikation ist OK		
		^	Modul-Status meldet Fehler		
		X	Bus-Kommunikation nicht möglich		
		^	Modul-Status meldet Fehler		
		Χ	Fehler Busversorgungsspannung		
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30		
			Fehler Kanal x		
			■ Überlast, Kurzschluss		
			Fehler in der Parametrierung		
nicht relevan	t: X				

032-1CD30 - AO 4x16Bit 0...10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3	AO 2	Α	Kanal 2
4	AGND	Α	Masse der Kanäle
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7	AO 3	Α	Kanal 3
8	AGND	Α	Masse der Kanäle

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- ${\rm SX}\,$ $\,{\rm Subindex}\,$ für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h
+4	AO 2	2	Analogwert Kanal 2	6411h/s+2	03h
+6	AO 3	2	Analogwert Kanal 3	6411h/s+3	04h

032-1CD30 - AO 4x16Bit 0...10V > Technische Daten

4.13.1 Technische Daten

Artikelnr.	032-1CD30
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	0509 2560
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	65 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Verlustleistung	0,8 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	-
Spannungsausgang Kurzschlussschutz	✓
Spannungsausgänge	✓
min. Bürdenwiderstand im Spannungsbereich	5 kΩ
max. kapazitive Last im Spannungsbereich	1 μF
max. Kurzschlussstrom des Spannungsausgangs	10 mA
Ausgangsspannungsbereiche	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,2%
Grundfehlergrenze Spannungsbereiche	+/-0,1%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 24V
Stromausgänge	2
max. Bürdenwiderstand im Strombereich	±
max. induktive Last im Strombereich	±
typ. Leerlaufspannung des Stromausgangs	±
Ausgangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche	
Zerstörgrenze gegen von außen angelegte Spannungen	±
Einschwingzeit für ohmsche Last	150 μs
Einschwingzeit für kapazitive Last	1 ms
Einschwingzeit für induktive Last	-
Auflösung in Bit	16
Wandlungszeit	200 μs alle Kanäle
Ersatzwerte aufschaltbar	nein

032-1CD30 - AO 4x16Bit 0...10V > Technische Daten

Artikelnr.	032-1CD30
Ausgangsdatengröße	8 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	8
Parameterbytes	10
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	60 g
Gewicht inklusive Zubehör	60 g

032-1CD30 - AO 4x16Bit 0...10V > Parametrierdaten

Artikelnr.	032-1CD30
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.13.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
SHORT_EN	1	Kurzschlusserkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	10h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	10h	81h	3103h	04h
CH2FN	1	Funktionsnummer Kanal 2	10h	82h	3104h	05h
CH3FN	1	Funktionsnummer Kanal 3	10h	83h	3105h	06h

SHORT_EN Kurzschlusserkennung

Byte	Bit 7 0
0	 Bit 0: Kurzschlusserkennung Kanal 0 (1: an) Bit 1: Kurzschlusserkennung Kanal 1 (1: an) Bit 1: Kurzschlusserkennung Kanal 2 (1: an) Bit 1: Kurzschlusserkennung Kanal 3 (1: an) Bit 7 4: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1CD30 - AO 4x16Bit 0...10V > Diagnosedaten

0 ... 10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	U - D x 10
Siemens	10V	27648	6C00h	Nennbereich	$U = D x \frac{10}{27648}$
S7-Format	5V	13824	3600h		17
(10h)	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	
0 10V	12,5V	20480	5000h	Übersteuerung	U - D x 10
Siemens	10V	16384	4000h	Nennbereich	$U = D x \frac{10}{16384}$
S5-Format	5V	8192	2000h		17
(20h)	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	

4.13.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnose-daten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Kurzschluss/Überlast (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	02h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah

032-1CD30 - AO 4x16Bit 0...10V > Diagnosedaten

Name	Bytes	Funktion	Default	DS	IX	SX
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2				0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3				0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0				
0	■ Bit 2 0: reserviert				
	Bit 3: gesetzt bei internem Diagnosepufferüberlauf				
	■ Bit 4: gesetzt bei internem Kommunikationsfehler				
	■ Bit 7 5: reserviert				

CHTYP Kanaltyp

Byte	Bit 7 0
0	 ■ Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler ■ Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

032-1CD30 - AO 4x16Bit 0...10V > Diagnosedaten

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0							
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert 							

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0					
0	Kanalspezifische Fehler: Kanal x:					
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 2 1: reserviert Bit 3: Kurzschluss nach M Bit 7 4: reserviert 					

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

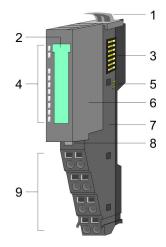
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

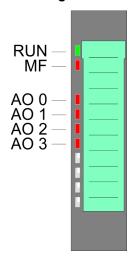
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.

032-1CD40 - AO 4x16Bit 0(4)...20mA


4.14 032-1CD40 - AO 4x16Bit 0(4)...20mA

Eigenschaften

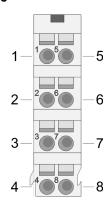
Das Elektronikmodul besitzt 4 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

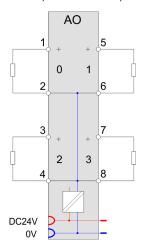

- 4 analoge Ausgänge
- Stromausgabe 0...20mA; 4...20mA
- Diagnosefunktion
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN grün	MF ■ rot	AO x ■ rot	Beschreibung
gruii	100	100	- · · · · · · · · · · · · · · · · · · ·
		X	Bus-Kommunikation ist OK
_			Modul-Status ist OK
_		Х	Bus-Kommunikation ist OK
		X	Modul-Status meldet Fehler
		X	Bus-Kommunikation nicht möglich
		^	Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			■ Fehler in der Parametrierung
			Drahtbruch (falls parametriert)
nicht relevant: X			

032-1CD40 - AO 4x16Bit 0(4)...20mA

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3	AO 2	Α	Kanal 2
4	AGND	Α	Masse der Kanäle
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7	AO 3	Α	Kanal 3
8	AGND	Α	Masse der Kanäle

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- ${\rm SX}\,$ $\,{\rm Subindex}\,$ für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h
+4	AO 2	2	Analogwert Kanal 2	6411h/s+2	03h
+6	AO 3	2	Analogwert Kanal 3	6411h/s+3	04h

032-1CD40 - AO 4x16Bit 0(4)...20mA > Technische Daten

4.14.1 Technische Daten

Artikelnr.	032-1CD40
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	050C 25E0
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	65 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Verlustleistung	0,8 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	-
Spannungsausgang Kurzschlussschutz	-
Spannungsausgänge	-
min. Bürdenwiderstand im Spannungsbereich	-
max. kapazitive Last im Spannungsbereich	-
max. Kurzschlussstrom des Spannungsausgangs	-
Ausgangsspannungsbereiche	-
Gebrauchsfehlergrenze Spannungsbereiche	-
Grundfehlergrenze Spannungsbereiche	-
Zerstörgrenze gegen von außen angelegte Spannungen	-
Stromausgänge	✓
max. Bürdenwiderstand im Strombereich	350 Ω
max. induktive Last im Strombereich	10 mH
typ. Leerlaufspannung des Stromausgangs	12 V
Ausgangsstrombereiche	0 mA +20 mA
	+4 mA +20 mA
Gebrauchsfehlergrenze Strombereiche	+/-0,2%
Grundfehlergrenze Strombereiche	+/-0,1%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 12V (30V für 1s)
Einschwingzeit für ohmsche Last	0,25 ms
Einschwingzeit für kapazitive Last	-
Einschwingzeit für induktive Last	1,5 ms
Auflösung in Bit	16
Wandlungszeit	400 μs alle Kanäle

032-1CD40 - AO 4x16Bit 0(4)...20mA > Technische Daten

Artikelnr.	032-1CD40
Ersatzwerte aufschaltbar	nein
Ausgangsdatengröße	8 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	8
Parameterbytes	10
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g

032-1CD40 - AO 4x16Bit 0(4)...20mA > Parametrierdaten

Artikelnr.	032-1CD40
Gewicht inklusive Zubehör	61 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.14.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
WIBRK_EN	1	Drahtbrucherkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	31h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	31h	81h	3103h	04h
CH2FN	1	Funktionsnummer Kanal 2	31h	82h	3104h	05h
CH3FN	1	Funktionsnummer Kanal 3	31h	83h	3105h	06h

WIBRK_EN Drahtbrucherkennung

Byte	Bit 7 0		
0	 Bit 0: Drahtbrucherkennung Kanal 0 (1: an) Bit 1: Drahtbrucherkennung Kanal 1 (1: an) Bit 2: Drahtbrucherkennung Kanal 2 (1: an) Bit 3: Drahtbrucherkennung Kanal 3 (1: an) Bit 7 4: reserviert 		

Bitte beachten Sie, dass bei aktivierter Drahtbrucherkennung es im Ausgabebereich 0...20mA bei der Unterschreitung von 40μA (100 Digits) zu sporadischen Drahtbruchmeldungen kommen kann!

032-1CD40 - AO 4x16Bit 0(4)...20mA > Parametrierdaten

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

0 ... 20mA

Ausgabebereich	Strom	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(I)	(D)			
0 20mA	23,52mA	32511	7EFFh	Übersteuerung	20
Siemens	20mA	27648	6C00h	Nennbereich	$I = D x \frac{20}{27648}$
S7-Format	10mA	13824	3600h		
(31h)	0mA	0	0000h		$D = 27648 \ x \ \frac{I}{20}$
	Nicht möglich, wir	d auf 0mA begre	nzt.	Untersteuerung	20
0 20mA	25,00mA	20480	5000h	Übersteuerung	20
Siemens	20mA	16384	4000h	Nennbereich	$I = D x \frac{20}{16384}$
S5-Format	10mA	8192	2000h		
(41h)	0mA	0	0000h		$D = 16384 \ x \ \frac{I}{20}$
	Nicht möglich, wir	d auf 0mA begre	nzt.	Untersteuerung	20

4 ... 20mA

Ausgabebereich	Strom	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(I)	(D)			
4 20mA	22,81mA	32511	7EFFh	Übersteuerung	$I = D \ x \ \frac{16}{27648} \ + \ 4$
Siemens	20mA	27648	6C00h	Nennbereich	27648
S7-Format	12mA	13824	3600h		I-4
(30h)	4mA	0	0000h		$D = 27648 \ x \ \frac{1-4}{16}$
	0mA	-6912	E500h	Untersteuerung	
4 20mA	24,00mA	20480	5000h	Übersteuerung	$I = D \times \frac{16}{16384} + 4$
Siemens	20mA	16384	4000h	Nennbereich	$1 - D \times \frac{1}{16384} + 4$
S5-Format	12mA	8192	2000h		I-4
(40h)	4mA	0	0000h		$D = 16384 \ x \ \frac{1-4}{16}$
	0mA	-4096	F000h	Untersteuerung	

032-1CD40 - AO 4x16Bit 0(4)...20mA > Diagnosedaten

4.14.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Drahtbruch (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

032-1CD40 - AO 4x16Bit 0(4)...20mA > Diagnosedaten

MODTYP Modulinformation

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 0101b Analogbaugruppe Bit 4: Kanalinformation vorhanden Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 ■ Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler ■ Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x:
	Bit 0: gesetzt bei Projektierungs-/ParametrierungsfehlerBit 3 1: reserviert
	■ Bit 4: gesetzt bei Drahtbruch
	■ Bit 7 5: reserviert

032-1CD40 - AO 4x16Bit 0(4)...20mA > Diagnosedaten

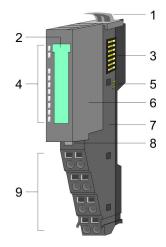
DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

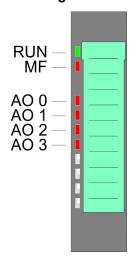
Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2³²-1 μ s wieder bei 0 beginnt.

032-1CD70 - AO 4x16Bit ±10V


4.15 032-1CD70 - AO 4x16Bit ±10V

Eigenschaften

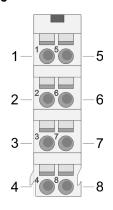
Das Elektronikmodul besitzt 4 Ausgänge, deren Funktionen parametrierbar sind. Die Kanäle auf dem Modul sind zum Rückwandbus potenzialgetrennt. Zusätzlich sind die Kanäle mittels DC/DC-Wandler zur DC 24V Leistungsversorgung potenzialgetrennt.

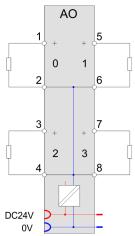

- 4 analoge Ausgänge
- Spannungsausgabe ±10V, 0 ... 10V
- Diagnosefunktion
- 16Bit Auflösung

Aufbau

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Statusanzeige




RUN	MF	AO x	Beschreibung
grün	rot	rot	
_		X	Bus-Kommunikation ist OK
		A	Modul-Status ist OK
		X	Bus-Kommunikation ist OK
		^	Modul-Status meldet Fehler
		Х	Bus-Kommunikation nicht möglich
		^	Modul-Status meldet Fehler
		X	Fehler Busversorgungsspannung
X	ZHz	X	Konfigurationsfehler ∜ Kap. 2.8 "Hilfe zur Fehlersuche - LEDs" Seite 30
			Fehler Kanal x
			■ Überlast, Kurzschluss
			■ Fehler in der Parametrierung
nicht relevant: X			

032-1CD70 - AO 4x16Bit ±10V

Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1	AO 0	Α	Kanal 0
2	AGND	Α	Masse der Kanäle
3	AO 2	Α	Kanal 2
4	AGND	Α	Masse der Kanäle
5	AO 1	Α	Kanal 1
6	AGND	Α	Masse der Kanäle
7	AO 3	Α	Kanal 3
8	AGND	Α	Masse der Kanäle

A: Ausgang

Eingabebereich

Das Modul belegt keine Bytes im Eingabebereich.

Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

- IX Index für Zugriff über CANopen mit s = Subindex, abhängig von Anzahl und Typ der Analog-Module
- SX Subindex für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Adr.	Name	Bytes	Funktion	IX	SX
+0	AO 0	2	Analogwert Kanal 0	6411h/s	01h
+2	AO 1	2	Analogwert Kanal 1	6411h/s+1	02h
+4	AO 2	2	Analogwert Kanal 2	6411h/s+2	03h
+6	AO 3	2	Analogwert Kanal 3	6411h/s+3	04h

032-1CD70 - AO 4x16Bit ±10V > Technische Daten

4.15.1 Technische Daten

Artikelnr.	032-1CD70
Bezeichnung	SM 032 - Analoge Ausgabe
Modulkennung	050A 2560
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	65 mA
Stromaufnahme aus Lastspannung L+ (ohne Last)	20 mA
Verlustleistung	0,8 W
Technische Daten Analoge Ausgänge	
Anzahl Ausgänge	4
Leitungslänge geschirmt	200 m
Lastnennspannung	DC 24 V
Verpolschutz der Lastnennspannung	✓
Stromaufnahme aus Lastnennspannung	
Spannungsausgang Kurzschlussschutz	✓
Spannungsausgänge	✓
min. Bürdenwiderstand im Spannungsbereich	5 kΩ
max. kapazitive Last im Spannungsbereich	1 μF
max. Kurzschlussstrom des Spannungsausgangs	10 mA
Ausgangsspannungsbereiche	-10 V +10 V
	0 V +10 V
Gebrauchsfehlergrenze Spannungsbereiche	+/-0,2%
Grundfehlergrenze Spannungsbereiche	+/-0,1%
Zerstörgrenze gegen von außen angelegte Spannungen	max. 24V
Stromausgänge	-
max. Bürdenwiderstand im Strombereich	-
max. induktive Last im Strombereich	-
typ. Leerlaufspannung des Stromausgangs	-
Ausgangsstrombereiche	-
Gebrauchsfehlergrenze Strombereiche	-
Grundfehlergrenze Strombereiche	-
Zerstörgrenze gegen von außen angelegte Spannungen	-
Einschwingzeit für ohmsche Last	300 µs
Einschwingzeit für kapazitive Last	3 ms
Einschwingzeit für induktive Last	-
Auflösung in Bit	16
Wandlungszeit	200 μs alle Kanäle

032-1CD70 - AO 4x16Bit ±10V > Technische Daten

Artikelnr.	032-1CD70
Ersatzwerte aufschaltbar	nein
Ausgangsdatengröße	8 Byte
Status, Alarm, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓
zwischen Kanälen und Spannungsversorgung	✓
max. Potenzialdifferenz zwischen Stromkreisen	-
max. Potenzialdifferenz zwischen Eingängen (Ucm)	-
max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)	DC 75 V/ AC 50 V
max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)	-
max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso)	-
max. Potenzialdifferenz zwischen Mintern und Ausgängen	-
Isolierung geprüft mit	DC 500 V
Datengrößen	
Eingangsbytes	0
Ausgangsbytes	8
Parameterbytes	10
Diagnosebytes	20
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	61 g

032-1CD70 - AO 4x16Bit ±10V > Parametrierdaten

Artikelnr.	032-1CD70
Gewicht inklusive Zubehör	61 g
Gewicht Brutto	75 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	ja

4.15.2 Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
RES0	1	reserviert	00h	00h	3100h	01h
SHORT_EN	1	Kurzschlusserkennung	00h	00h	3101h	02h
CH0FN	1	Funktionsnummer Kanal 0	12h	80h	3102h	03h
CH1FN	1	Funktionsnummer Kanal 1	12h	81h	3103h	04h
CH2FN	1	Funktionsnummer Kanal 2	12h	82h	3104h	05h
CH3FN	1	Funktionsnummer Kanal 3	12h	83h	3105h	06h

SHORT_EN Kurzschlusserkennung

Byte	Bit 7 0
0	 Bit 0: Kurzschlusserkennung Kanal 0 (1: an) Bit 1: Kurzschlusserkennung Kanal 1 (1: an) Bit 2: Kurzschlusserkennung Kanal 2 (1: an) Bit 3: Kurzschlusserkennung Kanal 3 (1: an) Bit 7 4: reserviert

CHxFN Funktionsnummer Kanal x

Nachfolgend sind alle Ausgabebereiche mit zugehöriger Funktionsnummer aufgeführt, die vom Analog-Modul unterstützt werden. Durch Angabe von FFh wird der entsprechende Kanal deaktiviert. Mit den hier aufgeführten Formeln können Sie einen Wert (Digitalwert) in einen analogen Ausgabewert umrechnen und umgekehrt.

032-1CD70 - AO 4x16Bit ±10V > Parametrierdaten

±10V

Ausgabebereich (FktNr.)	Spannung (U)	Dezimal (D)	Hex	Bereich	Umrechnung
±10V	11,76V	32511	7EFFh	Übersteuerung	U - D × 10
Siemens S7-Format	10V	27648	6C00h	Nennbereich	$U = D x \frac{10}{27648}$
(12h)	5V	13824	3600h		II.
	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$
	-5V	-13824	CA00h		
	-10V	-27648	9400h		
	-11,76V	-32512	8100h	Untersteuerung	
±10V	12,5V	20480	5000h	Übersteuerung	U - D × 10
Siemens S5-Format	10V	16384	4000h	Nennbereich	$U = D x \frac{10}{16384}$
(22h)	5V	8192	2000h		II.
	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	-5V	-8192	E000h		
	-10V	-16384	C000h		
	-12,5V	-20480	B000h	Untersteuerung	

0 ... 10V

Ausgabebereich	Spannung	Dezimal	Hex	Bereich	Umrechnung
(FktNr.)	(U)	(D)			
0 10V	11,76V	32511	7EFFh	Übersteuerung	$U = D \times \frac{10}{27648}$
Siemens	10V	27648	6C00h	Nennbereich	$C = D \times {27648}$
S7-Format	5V	13824	3600h		II.
(10h)	0V	0	0000h		$D = 27648 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	
0 10V	12,5V	20480	5000h	Übersteuerung	U = D × 10
Siemens	10V	16384	4000h	Nennbereich	$U = D x \frac{10}{16384}$
S5-Format	5V	8192	2000h		11
(20h)	0V	0	0000h		$D = 16384 \ x \ \frac{U}{10}$
	Nicht möglich, wir	d auf 0V begrenz	t.	Untersteuerung	

032-1CD70 - AO 4x16Bit ±10V > Diagnosedaten

4.15.3 Diagnosedaten

Da dieses Modul keinen Diagnosealarm unterstützt, dienen die Diagnosedaten der Information über dieses Modul. Im Fehlerfall leuchtet die entsprechende Kanal-LED des Moduls und der Fehler wird in den Diagnosedaten eingetragen.

Folgende Fehler werden in den Diagnosedaten erfasst:

- Projektierungs-/Parametrierungsfehler
- Kurzschluss/Überlast (sofern parametriert)
- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	sx
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	15h			03h
RES2	1	reserviert	00h			04h
ERR_D	1	Diagnose	00h			05h
CHTYP	1	Kanaltyp	73h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler Kanal 0	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler Kanal 1	00h			0Ch
CH2ERR	1	Kanalspezifischer Fehler Kanal 2	00h			0Dh
CH3ERR	1	Kanalspezifischer Fehler Kanal 3	00h			0Bh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker	00h			13h

ERR_A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, bei Fehlen der externen Versorgungsspannung Bit 6 5: reserviert Bit 7: gesetzt bei Parametrierfehler

032-1CD70 - AO 4x16Bit ±10V > Diagnosedaten

MODTYP Modulinforma-

Byte	Bit 7 0
0	■ Bit 3 0: Modulklasse
	 0101b Analogbaugruppe
	■ Bit 4: Kanalinformation vorhanden
	■ Bit 7 5: reserviert

ERR_D Diagnose

Byte	Bit 7 0
0	 Bit 2 0: reserviert Bit 3: gesetzt bei internem Diagnosepufferüberlauf Bit 4: gesetzt bei internem Kommunikationsfehler Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	 Bit 6 0: Kanaltyp 70h: Digitaleingabe 71h: Analogeingabe 72h: Digitalausgabe 73h: Analogausgabe 74h: Analogeingabe/-ausgabe 76h: Zähler Bit 7: reserviert

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Kanalgruppe 0 Bit 1: gesetzt bei Fehler Kanalgruppe 1 Bit 2: gesetzt bei Fehler Kanalgruppe 2 Bit 3: gesetzt bei Fehler Kanalgruppe 3 Bit 7 4: reserviert

CH0ERR ... CH3ERR kanalspezifisch

Byte	Bit 7 0
0	Kanalspezifische Fehler: Kanal x
	 Bit 0: gesetzt bei Projektierungs-/Parametrierungsfehler Bit 2 1: reserviert
	Bit 3: gesetzt bei Kurzschluss nach M
	■ Bit 7 4: reserviert

032-1CD70 - AO 4x16Bit ±10V > Diagnosedaten

CH4ERR ... CH7ERR reserviert

Byte	Bit 7 0
0	reserviert

DIAG_US µs-Ticker

Byte	Bit 7 0
03	Wert des µs-Ticker bei Auftreten der Diagnose

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer (μ s-Ticker), welcher mit NetzEIN gestartet wird und nach 2^{32} - 1μ s wieder bei 0 beginnt.