

# VIPA System SLIO

FM | 050-1BB00 | Handbuch

HB300 | FM | 050-1BB00 | de | 16-50

Zähler-Modul 2x32Bit - FM 050



VIPA GmbH Ohmstr. 4

91074 Herzogenaurach Telefon: 09132-744-0 Telefax: 09132-744-1864 E-Mail: info@vipa.com Internet: www.vipa.com

## Inhaltsverzeichnis

| 1 | Allgemein                               | . 4 |
|---|-----------------------------------------|-----|
|   | 1.1 Copyright © VIPA GmbH               | . 4 |
|   | 1.2 Über dieses Handbuch                | . 5 |
|   | 1.3 Sicherheitshinweise                 | 6   |
| 2 | Grundlagen und Montage                  | . 7 |
|   | 2.1 Sicherheitshinweis für den Benutzer | . 7 |
|   | 2.2 Systemvorstellung                   | . 8 |
|   | 2.2.1 Übersicht                         | . 8 |
|   | 2.2.2 Komponenten                       | . 9 |
|   | 2.2.3 Zubehör                           | 11  |
|   | 2.3 Abmessungen                         | 12  |
|   | 2.4 Montage Peripherie-Module           | 15  |
|   | 2.5 Verdrahtung Peripherie-Module       | 18  |
|   | 2.6 Verdrahtung Power-Module            |     |
|   | 2.7 Demontage Peripherie-Module         |     |
|   | 2.8 Hilfe zur Fehlersuche - LEDs        |     |
|   | 2.9 Aufbaurichtlinien                   |     |
|   | 2.10 Allgemeine Daten                   | 31  |
| 3 | Hardwarebeschreibung                    | 33  |
|   | 3.1 Leistungsmerkmale                   | 33  |
|   | 3.2 Aufbau                              | 33  |
|   | 3.3 Technische Daten                    | 36  |
| 4 | Einsatz                                 | 39  |
|   | 4.1 Schnelleinstieg                     | 39  |
|   | 4.2 Ein-/Ausgabe-Bereich                | 42  |
|   | 4.2.1 Eingabebereich 12Byte             | 42  |
|   | 4.2.2 Ausgabebereich 12Byte             | 43  |
|   | 4.3 Parametrierdaten                    | 44  |
|   | 4.4 Zähler - Funktionen                 | 47  |
|   | 4.5 Zähler Zusatzfunktionen             | 53  |
|   | 4.6 Diagnose und Alarm                  | 57  |
|   |                                         |     |

Allgemein VIPA System SLIO

Copyright © VIPA GmbH

## 1 Allgemein

## 1.1 Copyright © VIPA GmbH

#### **All Rights Reserved**

Dieses Dokument enthält geschützte Informationen von VIPA und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.

Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von VIPA und dem Besitzer dieses Materials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl VIPA-intern als auch extern) geändert werden, es sei denn in Übereinstimmung mit anwendbaren Vereinbarungen, Verträgen oder Lizenzen.

Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an: VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH Ohmstraße 4, D-91074 Herzogenaurach, Germany

Tel.: +49 9132 744 -0 Fax.: +49 9132 744-1864 EMail: info@vipa.de

http://www.vipa.com



Es wurden alle Anstrengungen unternommen, um sicherzustellen, dass die in diesem Dokument enthaltenen Informationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Das Recht auf Änderungen der Informationen bleibt jedoch vorbehalten.

Die vorliegende Kundendokumentation beschreibt alle heute bekannten Hardware-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben.

#### EG-Konformitätserklärung

Hiermit erklärt VIPA GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften übereinstimmen. Die Übereinstimmung ist durch CE-Zeichen gekennzeichnet.

# Informationen zur Konformitätserklärung

Für weitere Informationen zur CE-Kennzeichnung und Konformitätserklärung wenden Sie sich bitte an Ihre Landesvertretung der VIPA GmbH.

#### Warenzeichen

VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S und Commander Compact sind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.

SPEED7 ist ein eingetragenes Warenzeichen der profichip GmbH.

SIMATIC, STEP, SINEC, TIA Portal, S7-300 und S7-400 sind eingetragene Warenzeichen der Siemens AG.

Microsoft und Windows sind eingetragene Warenzeichen von Microsoft Inc., USA.

Portable Document Format (PDF) und Postscript sind eingetragene Warenzeichen von Adobe Systems, Inc.

Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzeichen ihrer jeweiligen Eigentümer.

VIPA System SLIO Allgemein

Über dieses Handbuch

#### **Dokument-Support**

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefax: +49 9132 744-1204
EMail: documentation@vipa.de

#### **Technischer Support**

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefon: +49 9132 744-1150 (Hotline)

EMail: support@vipa.de

## 1.2 Über dieses Handbuch

## Zielsetzung und Inhalt

Das Handbuch beschreibt das FM 050-1BB00 aus dem System SLIO von VIPA. Beschrieben wird Aufbau, Projektierung und Anwendung.

| Produkt | BestNr.   | ab Stand:<br>HW |
|---------|-----------|-----------------|
| FM 050  | 050-1BB00 | 01              |

#### **Zielgruppe**

Das Handbuch ist geschrieben für Anwender mit Grundkenntnissen in der Automatisierungstechnik.

#### Aufbau des Handbuchs

Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine abgeschlossene Thematik.

#### **Orientierung im Dokument**

Als Orientierungshilfe stehen im Handbuch zur Verfügung:

- Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs
- Verweise mit Seitenangabe

## Verfügbarkeit

Das Handbuch ist verfügbar in:

- gedruckter Form auf Papier
- in elektronischer Form als PDF-Datei (Adobe Acrobat Reader)

## Piktogramme Signalwörter

Besonders wichtige Textteile sind mit folgenden Piktogrammen und Signalworten ausgezeichnet:



#### **GEFAHR!**

Unmittelbar drohende oder mögliche Gefahr. Personenschäden sind möglich.

Allgemein VIPA System SLIO

Sicherheitshinweise



#### **VORSICHT!**

Bei Nichtbefolgen sind Sachschäden möglich.



Zusätzliche Informationen und nützliche Tipps

#### 1.3 Sicherheitshinweise

# Bestimmungsgemäße Verwendung

Das System ist konstruiert und gefertigt für:

- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank



#### **GEFAHR!**

Das Gerät ist nicht zugelassen für den Einsatz

in explosionsgefährdeten Umgebungen (EX-Zone)

#### **Dokumentation**

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb



#### **VORSICHT!**

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

## **Entsorgung**

Zur Entsorgung des Geräts nationale Vorschriften beachten!

Sicherheitshinweis für den Benutzer

## 2 Grundlagen und Montage

#### 2.1 Sicherheitshinweis für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen

VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen. Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:



Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin. Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen. Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen. Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Baugruppen

Verwenden Sie für den Versand immer die Originalverpackung.

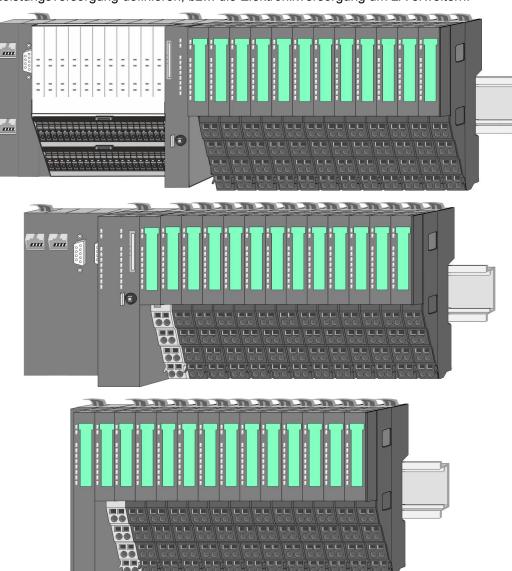
Messen und Ändern von elektrostatisch gefährdeten Baugruppen Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potenzialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.



#### **VORSICHT!**


Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

Systemvorstellung > Übersicht

## 2.2 Systemvorstellung

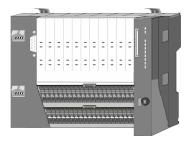
## 2.2.1 Übersicht

Das System SLIO ist ein modular aufgebautes Automatisierungssystem für die Montage auf einer 35mm Tragschiene. Mittels der Peripherie-Module in 2-, 4- und 8-Kanalausführung können Sie dieses System passgenau an Ihre Automatisierungsaufgaben adaptieren. Der Verdrahtungsaufwand ist gering gehalten, da die DC 24V Leistungsversorgung im Rückwandbus integriert ist und defekte Elektronik-Module bei stehender Verdrahtung getauscht werden können. Durch Einsatz der farblich abgesetzten Power-Module können Sie innerhalb des Systems weitere Potenzialbereiche für die DC 24V Leistungsversorgung definieren, bzw. die Elektronikversorgung um 2A erweitern.



Systemvorstellung > Komponenten

## 2.2.2 Komponenten


- CPU (Kopf-Modul)
- Bus-Koppler (Kopf-Modul)
- Zeilenanschaltung
- Peripherie-Module
- Zubehör



#### **VORSICHT!**

Beim Einsatz dürfen nur Module von VIPA kombiniert werden. Ein Mischbetrieb mit Modulen von Fremdherstellern ist nicht zulässig!

#### CPU 01xC



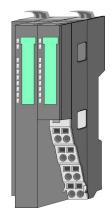
Bei der CPU 01xC sind CPU-Elektronik, Ein-/Ausgabe-Komponenten und Spannungsversorgung in ein Gehäuse integriert. Zusätzlich können am Rückwandbus bis zu 64 Peripherie-Module aus dem System SLIO angebunden werden. Als Kopf-Modul werden über die integrierte Spannungsversorgung sowohl die CPU-Elektronik, die Ein-/Ausgabe-Komponenten als auch die Elektronik der über den Rückwandbus angebunden Peripherie-Module versorgt. Zum Anschluss der Spannungsversorgung, der Ein-/Ausgabe-Komponenten und zur DC 24V Leistungsversorgung der über Rückwandbus angebunden Peripherie-Module besitzt die CPU abnehmbare Steckverbinder. Durch Montage von bis zu 64 Peripherie-Modulen am Rückwandbus der CPU werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.

#### CPU 01x



Bei der CPU 01x sind CPU-Elektronik und Power-Modul in ein Gehäuse integriert. Als Kopf-Modul werden über das integrierte Power-Modul zur Spannungsversorgung sowohl die CPU-Elektronik als auch die Elektronik der angebunden Peripherie-Module versorgt. Die DC 24V Leistungsversorgung für die angebunden Peripherie-Module erfolgt über einen weiteren Anschluss am Power-Modul. Durch Montage von bis zu 64 Peripherie-Modulen an der CPU werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.




#### **VORSICHT!**

CPU-Teil und Power-Modul der CPU dürfen nicht voneinander getrennt werden!

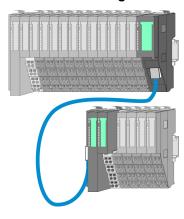
Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

Systemvorstellung > Komponenten

#### **Bus-Koppler**



Beim Bus-Koppler sind Bus-Interface und Power-Modul in ein Gehäuse integriert. Das Bus-Interface bietet Anschluss an ein übergeordnetes Bus-System. Als Kopf-Modul werden über das integrierte Power-Modul zur Spannungsversorgung sowohl das Bus-Interface als auch die Elektronik der angebunden Peripherie-Module versorgt. Die DC 24V Leistungsversorgung für die angebunden Peripherie-Module erfolgt über einen weiteren Anschluss am Power-Modul. Durch Montage von bis zu 64 Peripherie-Modulen am Bus-Koppler werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.

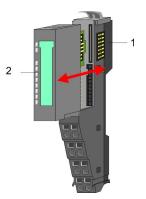



#### **VORSICHT!**

Bus-Interface und Power-Modul des Bus-Kopplers dürfen nicht voneinander getrennt werden!

Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

#### Zeilenanschaltung




Im System SLIO haben Sie die Möglichkeit bis zu 64 Module in einer Zeile zu stecken. Mit dem Einsatz der Zeilenanschaltung können Sie diese Zeile in mehrere Zeilen aufteilen. Hierbei ist am jeweiligen Zeilenende ein Zeilenanschaltung-Master-Modul zu setzen und die nachfolgende Zeile muss mit einem Zeilenanschaltung-Slave-Modul beginnen. Master und Slave sind über ein spezielles Verbindungskabel miteinander zu verbinden. Auf diese Weise können Sie eine Zeile auf bis zu 5 Zeilen aufteilen. Für die Verwendung der Zeilenanschaltung ist keine gesonderte Projektierung erforderlich.

## Peripherie-Module

Jedes Peripherie-Modul besteht aus einem Terminal- und einem Elektronik-Modul.





- 1 Terminal-Modul
- 2 Elektronik-Modul

Systemvorstellung > Zubehör

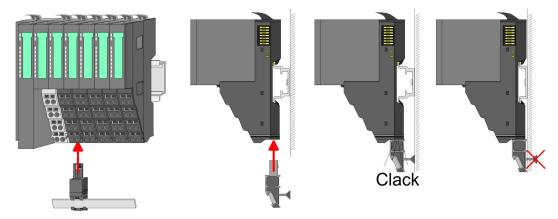
#### Terminal-Modul



Das *Terminal-Modul* bietet die Aufnahme für das Elektronik-Modul, beinhaltet den Rückwandbus mit Spannungsversorgung für die Elektronik, die Anbindung an die DC 24V Leistungsversorgung und den treppenförmigen Klemmblock für die Verdrahtung. Zusätzlich besitzt das Terminal-Modul ein Verriegelungssystem zur Fixierung auf einer Tragschiene. Mittels dieser Verriegelung können Sie Ihr SLIO-System außerhalb Ihres Schaltschranks aufbauen und später als Gesamtsystem im Schaltschrank montieren.

#### Elektronik-Modul




Über das *Elektronik-Modul*, welches durch einen sicheren Schiebemechanismus mit dem Terminal-Modul verbunden ist, wird die Funktionalität eines SLIO-Peripherie-Moduls definiert. Im Fehlerfall können Sie das defekte Elektronik-Modul gegen ein funktionsfähiges Modul tauschen. Hierbei bleibt die Verdrahtung bestehen. Auf der Frontseite befinden sich LEDs zur Statusanzeige. Für die einfache Verdrahtung finden Sie bei jedem Elektronik-Modul auf der Front und an der Seite entsprechende Anschlussbilder.

#### 2.2.3 Zubehör

#### Schirmschienen-Träger



Der Schirmschienen-Träger (Best.-Nr.: 000-0AB00) dient zur Aufnahme von Schirmschienen (10mm x 3mm) für den Anschluss von Kabelschirmen. Schirmschienen-Träger, Schirmschiene und Kabelschirmbefestigungen sind nicht im Lieferumfang enthalten, sondern ausschließlich als Zubehör erhältlich. Der Schirmschienen-Träger wird unterhalb des Klemmblocks in das Terminal-Modul gesteckt. Bei flacher Tragschiene können Sie zur Adaption die Abstandshalter am Schirmschienen-Träger abbrechen.

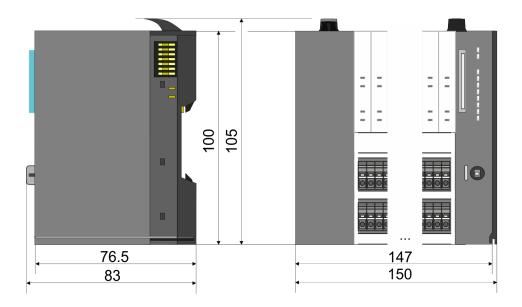


Abmessungen

#### **Bus-Blende**

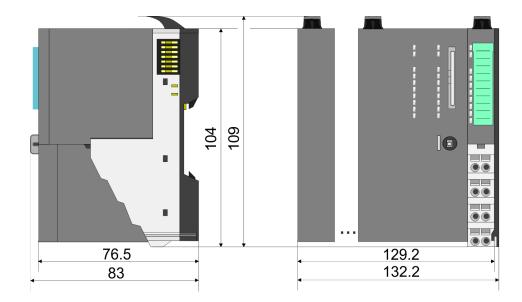


Bei jedem Kopf-Modul gehört zum Schutz der Bus-Kontakte eine Bus-Blende zum Lieferumfang. Vor der Montage von System SLIO-Modulen ist die Bus-Blende am Kopf-Modul zu entfernen. Zum Schutz der Bus-Kontakte müssen Sie die Bus-Blende immer am äußersten Modul montieren. Die Bus-Blende hat die Best.-Nr. 000-0AA00.

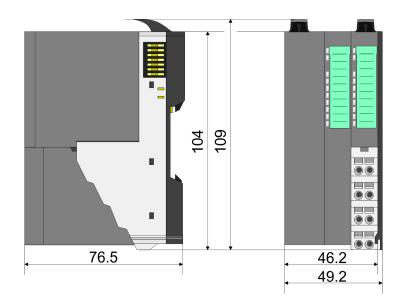

#### Kodier-Stecker



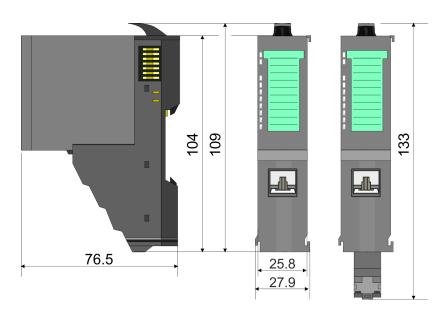
Sie haben die Möglichkeit die Zuordnung von Terminal- und Elektronik-Modul zu fixieren. Hierbei kommen Kodier-Stecker (Best-Nr.: 000-0AC00) von VIPA zum Einsatz. Die Kodier-Stecker bestehen aus einem Kodierstift-Stift und einer Kodier-Buchse, wobei durch Zusammenfügen von Elektronik- und Terminal-Modul der Kodier-Stift am Terminal-Modul und die Kodier-Buchse im Elektronik-Modul verbleiben. Dies gewährleistet, dass nach Austausch des Elektronik-Moduls nur wieder ein Elektronik-Modul mit der gleichen Kodierung gesteckt werden kann.


## 2.3 Abmessungen

#### Maße CPU 01xC

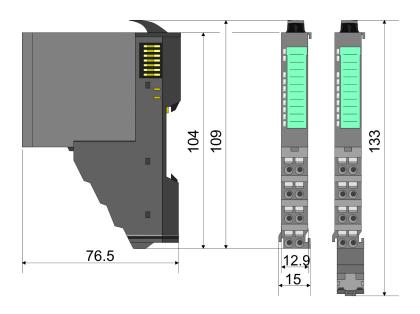



Abmessungen

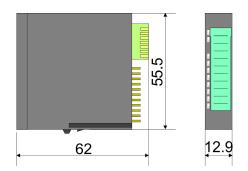

## Maße CPU 01x



# Maße Bus-Koppler und Zeilenanschaltung Slave




Maße Zeilenanschaltung Master




Abmessungen

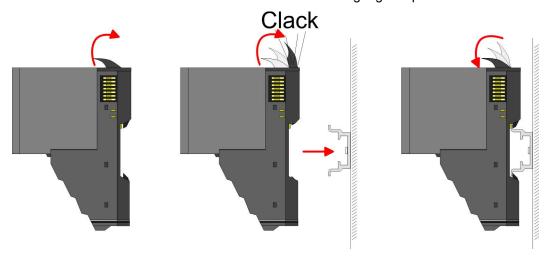
## Maße Peripherie-Modul



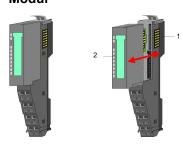
## Maße Elektronik-Modul



Maße in mm


Montage Peripherie-Module

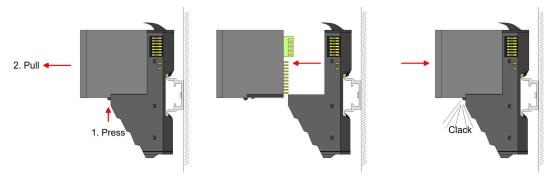
## 2.4 Montage Peripherie-Module


## Voraussetzungen für den UL-konformen Betrieb

- Verwenden Sie für die Spannungsversorgung ausschließlich SELV/ PELV-Netzteile.
- Das System SLIO darf nur in einem Gehäuse gemäß IEC61010-1
   9.3.2 c) eingebaut und betrieben werden.

Das Modul besitzt einen Verriegelungshebel an der Oberseite. Zur Montage und Demontage ist dieser Hebel nach oben zu drücken, bis er einrastet. Stecken Sie das zu montierende Modul an das zuvor gesteckte Modul und schieben Sie das Modul, geführt durch die Führungsleisten an der Ober- und Unterseite, auf die Tragschiene. Durch Klappen des Verriegelungshebels nach unten wird das Modul auf der Tragschiene fixiert. Sie können entweder die Module einzeln auf der Tragschiene montieren oder als Block. Hierbei ist zu beachten, dass jeder Verriegelungshebel geöffnet ist. Die einzelnen Module werden direkt auf eine Tragschiene montiert. Über die Verbindung mit dem Rückwandbus werden Elektronik- und Leistungsversorgung angebunden. Sie können bis zu 64 Module stecken. Bitte beachten Sie hierbei, dass der Summenstrom der Elektronikversorgung den Maximalwert von 3A nicht überschreitet. Durch Einsatz des Power-Moduls 007-1AB10 können Sie den Strom für die Elektronikversorgung entsprechend erweitern.



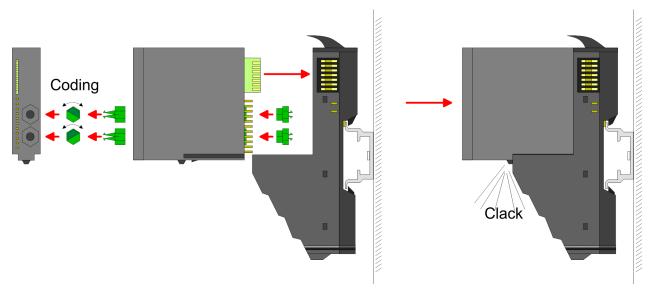

#### Terminal- und Elektronik-Modul



Jedes Peripherie-Modul besteht aus einem Terminal- und einem Elektronik-Modul.

- 1 Terminal-Modul
- 2 Elektronik-Modul

Zum Austausch eines Elektronik-Moduls können Sie das Elektronik-Modul, nach Betätigung der Entriegelung an der Unterseite, nach vorne abziehen. Für die Montage schieben Sie das Elektronik-Modul in die Führungsschiene, bis dieses an der Unterseite hörbar am Terminal-Modul einrastet.




Montage Peripherie-Module

#### Kodierung



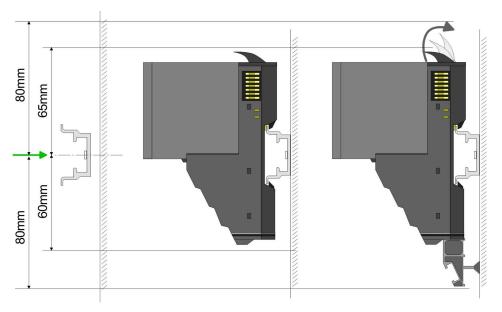
Sie haben die Möglichkeit die Zuordnung von Terminal- und Elektronik-Modul zu fixieren. Hierbei kommen Kodier-Stecker (Best-Nr.: 000-0AC00) von VIPA zum Einsatz. Die Kodier-Stecker bestehen aus einem Kodierstift-Stift und einer Kodier-Buchse, wobei durch Zusammenfügen von Elektronik- und Terminal-Modul der Kodier-Stift am Terminal-Modul und die Kodier-Buchse im Elektronik-Modul verbleiben. Dies gewährleistet, dass nach Austausch des Elektronik-Moduls nur wieder ein Elektronik-Modul mit der gleichen Kodierung gesteckt werden kann.



Jedes Elektronik-Modul besitzt an der Rückseite 2 Kodier-Aufnehmer für Kodier-Buchsen. Durch ihre Ausprägung sind 6 unterschiedliche Positionen pro Kodier-Buchse steckbar. Somit haben sie bei Verwendung beider Kodier-Aufnehmer 36 Kombinationsmöglichkeiten für die Kodierung.

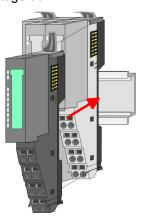
- 1. Stecken Sie gemäß Ihrer Kodierung 2 Kodier-Buchsen in die Aufnehmer am Elektronik-Modul, bis diese einrasten.
- 2. Stecken Sie nun den entsprechenden Kodier-Stift in die Kodier-Buchse.
- **3.** Zur Fixierung der Kodierung führen Sie Elektronik- und Terminal-Modul zusammen, bis diese hörbar einrasten.




#### **VORSICHT!**

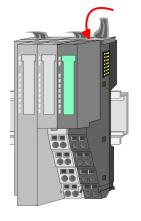
Bitte beachten Sie, dass bei Austausch eines bereits kodierten Elektronik-Moduls dieses immer durch ein Elektronik-Modul mit gleicher Kodierung ersetzt wird.

Auch bei vorhandener Kodierung am Terminal-Modul können Sie ein Elektronik-Modul ohne Kodierung stecken. Die Verantwortung bei der Verwendung von Kodierstiften liegt beim Anwender. VIPA übernimmt keinerlei Haftung für falsch gesteckte Elektronik-Module oder für Schäden, welche aufgrund fehlerhafter Kodierung entstehen!

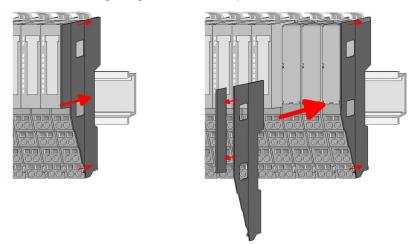

Montage Peripherie-Module

#### Montage Peripherie-Modul




- Montieren Sie die Tragschiene! Bitte beachten Sie, dass Sie von der Mitte der Tragschiene nach oben einen Montageabstand von mindestens 80mm und nach unten von 60mm bzw. 80mm bei Verwendung von Schirmschienen-Trägern einhalten.
- 2. Montieren Sie Ihr Kopfmodul wie z.B. CPU oder Feldbus-Koppler.
- **3.** Entfernen Sie vor der Montage der Peripherie-Module die Bus-Blende auf der rechten Seite des Kopf-Moduls, indem Sie diese nach vorn abziehen. Bewahren Sie die Blende für spätere Montage auf.






- **4.** Klappen Sie zur Montage den Verriegelungshebel des Peripherie-Moduls nach oben, bis dieser einrastet.
- 5. Stecken Sie das zu montierende Modul an das zuvor gesteckte Modul und schieben Sie das Modul, geführt durch die Führungsleisten an der Ober- und Unterseite, auf die Tragschiene.

Verdrahtung Peripherie-Module



**6.** Klappen Sie den Verriegelungshebel des Peripherie-Moduls wieder nach unten.

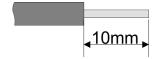


7. Nachdem Sie Ihr Gesamt-System montiert haben, müssen Sie zum Schutz der Bus-Kontakte die Bus-Blende am äußersten Modul wieder stecken. Handelt es sich bei dem äußersten Modul um ein Klemmen-Modul, so ist zur Adaption der obere Teil der Bus-Blende abzubrechen.

## 2.5 Verdrahtung Peripherie-Module

#### Terminal-Modul Anschlussklemmen




#### **VORSICHT!**

## Keine gefährliche Spannungen anschließen!

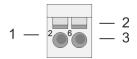
Sofern dies nicht ausdrücklich bei der entsprechenden Modulbeschreibung vermerkt ist, dürfen Sie an dem entsprechenden Terminal-Modul keine gefährlichen Spannungen anschließen!

Bei der Verdrahtung von Terminal-Modulen kommen Anschlussklemmen mit Federklemmtechnik zum Einsatz. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen. Im Gegensatz zur Schraubverbindung ist diese Verbindungsart erschütterungssicher.

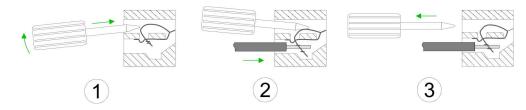
#### **Daten**

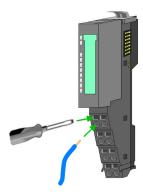


 $U_{max}$  240V AC / 30V DC


max 10A

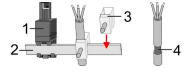
Querschnitt 0,08 ... 1,5mm<sup>2</sup> (AWG 28 ... 16)


Abisolierlänge 10mm


Verdrahtung Peripherie-Module

#### Verdrahtung Vorgehensweise

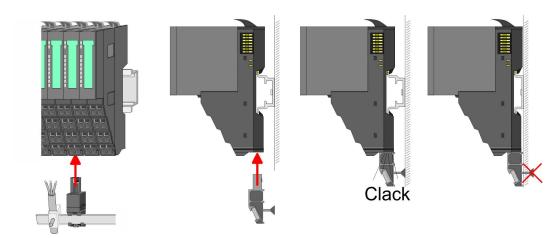



- 1 Pin-Nr. am Steckverbinder
- 2 Entriegelung für Schraubendreher
- 3 Anschlussöffnung für Draht





- 2um Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung. Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- **2.** Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen.
- **3.** Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit der Anschlussklemme verbunden.


Schirm auflegen

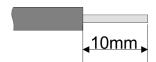


- 1 Schirmschienen-Träger
- 2 Schirmschiene (10mm x 3mm)
- 3 Schirmanschlussklemme
- 4 Kabelschirm

Zur Schirmauflage ist die Montage von Schirmschienen-Trägern erforderlich. Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen.

- Jedes System SLIO-Modul besitzt an der Unterseite Aufnehmer für Schirmschienen-Träger. Stecken Sie Ihre Schirmschienenträger, bis diese am Modul einrasten. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.
- **2.** Legen Sie Ihre Schirmschiene in den Schirmschienen-Träger ein.




**3.** Legen Sie ihre Kabel mit dem entsprechend abisolierten Kabelschirm auf und verbinden Sie diese über die Schirmanschlussklemme mit der Schirmschiene.

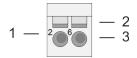
## 2.6 Verdrahtung Power-Module

#### Terminal-Modul Anschlussklemmen

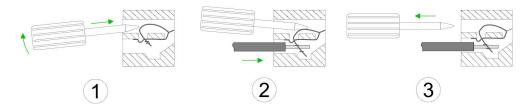
Power-Module sind entweder im Kopf-Modul integriert oder können zwischen die Peripherie-Module gesteckt werden. Bei der Verdrahtung von Power-Modulen kommen Anschlussklemmen mit Federklemmtechnik zum Einsatz. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen. Im Gegensatz zur Schraubverbindung ist diese Verbindungsart erschütterungssicher.

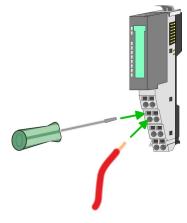
### **Daten**




U<sub>max</sub> 240V AC / 30V DC

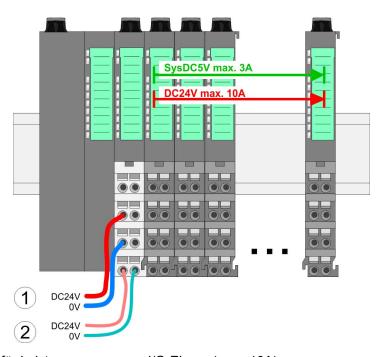
 $I_{\text{max}}$  10A


Querschnitt 0,08 ... 1,5mm<sup>2</sup> (AWG 28 ... 16)


Abisolierlänge 10mm

#### Verdrahtung Vorgehensweise




- Pin-Nr. am Steckverbinder
- Entriegelung für Schraubendreher
- Anschlussöffnung für Draht





- Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung. Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- **2.** Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm<sup>2</sup> bis 1,5mm<sup>2</sup> anschließen.
- Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit der Anschlussklemme verbunden.

Standard-Verdrahtung



- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)(2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene

PM - Power Modul

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

| 1—1—5——5    |
|-------------|
| 2-2-6       |
| 3-7-7-7     |
| 4-8         |
| DC24V<br>0V |
| DC24V<br>0V |

| Pos. | Funktion   | Тур | Beschreibung                    |
|------|------------|-----|---------------------------------|
| 1    |            |     | nicht belegt                    |
| 2    | DC 24V     | E   | DC 24V für Leistungsversorgung  |
| 3    | 0V         | E   | GND für Leistungsversorgung     |
| 4    | Sys DC 24V | E   | DC 24V für Elektronikversorgung |
| 5    |            |     | nicht belegt                    |
| 6    | DC 24V     | E   | DC 24V für Leistungsversorgung  |
| 7    | 0V         | E   | GND für Leistungsversorgung     |
| 8    | Sys 0V     | E   | GND für Elektronikversorgung    |

E: Eingang



#### **VORSICHT!**

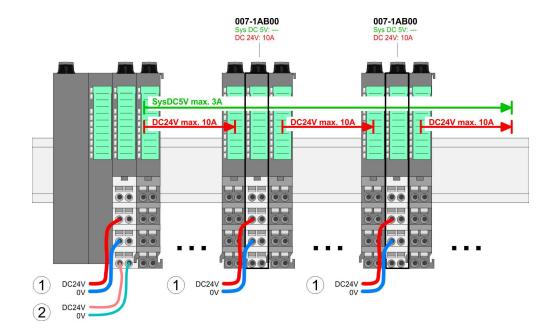
Da die Leistungsversorgung keine interne Absicherung besitzt, ist diese extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z!



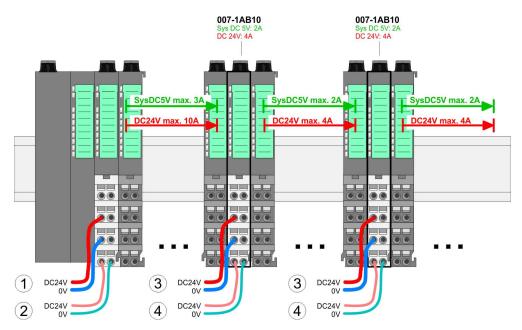
Die Elektronikversorgung ist intern gegen zu hohe Spannung durch eine Sicherung geschützt. Die Sicherung befindet sich innerhalb des Power-Moduls. Wenn die Sicherung ausgelöst hat, muss das Elektronik-Modul getauscht werden!

#### **Absicherung**

- Die Leistungsversorgung ist extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z.
- Es wird empfohlen die Elektronikversorgung für Kopf-Modul und I/O-Ebene extern mit einer 2A-Sicherung (flink) bzw. einem Leitungsschutzschalter 2A Charakteristik Z abzusichern.
- Die Elektronikversorgung für die I/O-Ebene des Power-Moduls 007-1AB10 sollte ebenfalls extern mit einer 1A-Sicherung (flink) bzw. einem Leitungsschutzschalter 1A Charakteristik Z abgesichert werden.

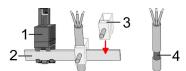

#### Zustand der Elektronikversorgung über LEDs

Nach PowerON des System SLIO leuchtet an jedem Modul die RUN- bzw. MF-LED, sofern der Summenstrom für die Elektronikversorgung 3A nicht übersteigt. Ist der Summenstrom größer als 3A, werden die LEDs nicht mehr angesteuert. Hier müssen Sie zwischen Ihre Peripherie-Module das Power-Modul mit der Best.-Nr. 007-1AB10 platzieren.


#### Einsatz von Power-Modulen

- Das Power-Modul mit der Best.-Nr. 007-1AB00 setzen Sie ein, wenn die 10A für die Leistungsversorgung nicht mehr ausreichen. Sie haben so auch die Möglichkeit, Potenzialgruppen zu bilden.
- Das Power-Modul mit der Best.-Nr. 007-1AB10 setzen Sie ein, wenn die 3A für die Elektronikversorgung am Rückwandbus nicht mehr ausreichen. Zusätzlich erhalten Sie eine neue Potenzialgruppe für die DC 24V Leistungsversorgung mit max. 4A.
- Durch Stecken des Power-Moduls 007-1AB10 können am nachfolgenden Rückwandbus Module gesteckt werden mit einem maximalen Summenstrom von 2A. Danach ist wieder ein Power-Modul zu stecken. Zur Sicherstellung der Spannungsversorgung dürfen die Power-Module beliebig gemischt eingesetzt werden.

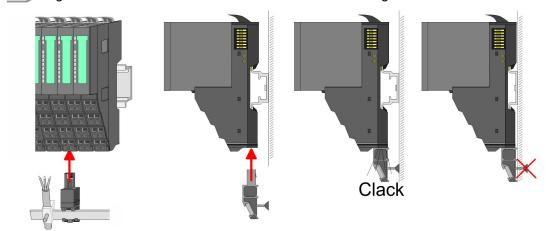
#### Power-Modul 007-1AB00




#### Power-Modul 007-1AB10



- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)
- (2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene
- (3) DC 24V für Leistungsversorgung I/O-Ebene (max. 4A)
- (4) DC 24V für Elektronikversorgung I/O-Ebene


#### Schirm auflegen



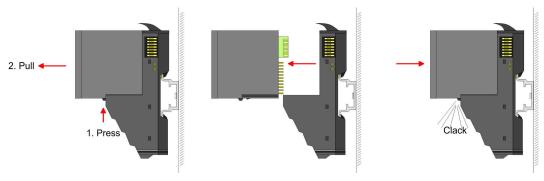
- 1 Schirmschienen-Träger
- 2 Schirmschiene (10mm x 3mm)
- 3 Schirmanschlussklemme
- 4 Kabelschirm

Zur Schirmauflage ist die Montage von Schirmschienen-Trägern erforderlich. Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen.

- 1. Jedes System SLIO-Modul besitzt an der Unterseite Aufnehmer für Schirmschienen-Träger. Stecken Sie Ihre Schirmschienenträger, bis diese am Modul einrasten. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.
- 2. Legen Sie Ihre Schirmschiene in den Schirmschienen-Träger ein.

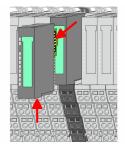


**3.** Legen Sie ihre Kabel mit dem entsprechend abisolierten Kabelschirm auf und verbinden Sie diese über die Schirmanschlussklemme mit der Schirmschiene.


Demontage Peripherie-Module

## 2.7 Demontage Peripherie-Module

## Vorgehensweise

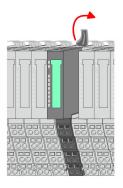

## Austausch eines Elektronik-Moduls

1. Machen Sie Ihr System stromlos.



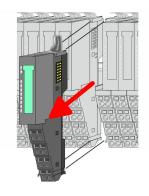
- **2.** Zum Austausch eines Elektronik-Moduls können Sie das Elektronik-Modul, nach Betätigung der Entriegelung an der Unterseite, nach vorne abziehen.
- **3.** Für die Montage schieben Sie das neue Elektronik-Modul in die Führungsschiene, bis dieses an der Unterseite am Terminal-Modul einrastet.
  - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

# Austausch eines Peripherie-Moduls

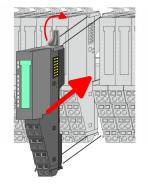



- 1. Machen Sie Ihr System stromlos.
- 2. Entfernen Sie falls vorhanden die Verdrahtung am Modul.
- 3.

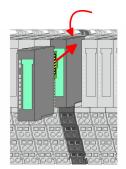



Bei der Demontage und beim Austausch eines (Kopf)-Moduls oder einer Modulgruppe müssen Sie aus montagetechnischen Gründen immer das <u>rechts</u> daneben befindliche Elektronik-Modul entfernen! Nach der Montage kann es wieder gesteckt werden.

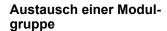
Betätigen Sie die Entriegelung an der Unterseite des rechts daneben befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.

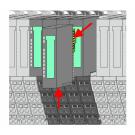



**4.** Klappen Sie den Verriegelungshebel des zu tauschenden Moduls nach oben.


Demontage Peripherie-Module




- **5.** Diehen Sie das Modul nach vorne ab.
- **6.** Zur Montage klappen Sie den Verriegelungshebel des zu montierenden Moduls nach oben.




- Stecken Sie das zu montierende Modul in die Lücke zwischen die beiden Module und schieben Sie das Modul, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.
- 8. Klappen Sie den Verriegelungshebel wieder nach unten.



- 9. Stecken Sie wieder das zuvor entnommene Elektronik-Modul.
- 10. Verdrahten Sie Ihr Modul.
  - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

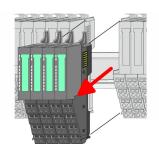




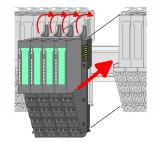


- 1. Machen Sie Ihr System stromlos.
- **2.** Entfernen Sie falls vorhanden die Verdrahtung an der Modulgruppe.

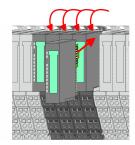
3.




Bei der Demontage und beim Austausch eines (Kopf)-Moduls oder einer Modulgruppe müssen Sie aus montagetechnischen Gründen immer das <u>rechts</u> daneben befindliche Elektronik-Modul entfernen! Nach der Montage kann es wieder gesteckt werden.


Betätigen Sie die Entriegelung an der Unterseite des rechts neben der Modulgruppe befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.

**4.** Klappen Sie alle Verriegelungshebel der zu tauschenden Modulgruppe nach oben.


Demontage Peripherie-Module



- **5.** Ziehen Sie die Modulgruppe nach vorne ab.
- Zur Montage klappen Sie alle Verriegelungshebel der zu montierenden Modulgruppe nach oben.



- 7. Stecken Sie die zu montierende Modulgruppe in die Lücke zwischen die beiden Module und schieben Sie die Modulgruppe, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.
- **8.** Klappen Sie alle Verriegelungshebel wieder nach unten.



- 9. Stecken Sie wieder das zuvor entnommene Elektronik-Modul.
- 10. Verdrahten Sie Ihre Modulgruppe.
  - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

Hilfe zur Fehlersuche - LEDs

#### 2.8 Hilfe zur Fehlersuche - LEDs

#### **Allgemein**

Jedes Modul besitzt auf der Frontseite die LEDs RUN und MF. Mittels dieser LEDs können Sie Fehler in Ihrem System bzw. fehlerhafte Module ermitteln.

In den nachfolgenden Abbildungen werden blinkende LEDs mit ☼ gekennzeichnet.

Summenstrom der Elektronik-Versorgung überschritten



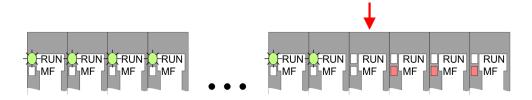
Verhalten: Nach dem Einschalten bleibt an jedem Modul die RUN-LED aus und es leuchtet sporadisch die MF-LED.

*Ursache:* Der maximale Strom für die Elektronikversorgung ist überschritten.

Abhilfe: Platzieren Sie immer, sobald der Summenstrom für die Elektronikversorgung den maximalen Strom übersteigt, das Power-Modul 007-1AB10. 

Kapitel 2.6 "Verdrahtung Power-Module" auf Seite 20

#### Konfigurationsfehler




*Verhalten:* Nach dem Einschalten blinkt an einem Modul bzw. an mehreren Modulen die MF-LED. Die RUN-LED bleibt ausgeschaltet.

*Ursache:* An dieser Stelle ist ein Modul gesteckt, welches nicht dem aktuell konfigurierten Modul entspricht.

Abhilfe: Stimmen Sie Konfiguration und Hardware-Aufbau aufeinander ab.

#### Modul-Ausfall



*Verhalten:* Nach dem Einschalten blinken alle RUN-LEDs bis zum fehlerhaften Modul. Bei allen nachfolgenden Modulen leuchtet die MF LED und die RUN-LED ist aus.

Ursache: Das Modul rechts der blinkenden Module ist defekt.

Abhilfe: Ersetzen Sie das defekte Modul.

Aufbaurichtlinien

## 2.9 Aufbaurichtlinien

#### **Allgemeines**

Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau eines SPS-Systems. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV) sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist.

#### Was bedeutet EMV?

Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektrischen Gerätes, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren, ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen.

Die Komponenten von VIPA sind für den Einsatz in Industrieumgebungen entwickelt und erfüllen hohe Anforderungen an die EMV. Trotzdem sollten Sie vor der Installation der Komponenten eine EMV-Planung durchführen und mögliche Störquellen in die Betrachtung einbeziehen.

### Mögliche Störeinwirkungen

Elektromagnetische Störungen können sich auf unterschiedlichen Pfaden in Ihre Steuerung einkoppeln:

- Elektromagnetische Felder (HF-Einkopplung)
- Magnetische Felder mit energietechnischer Frequenz
- Bus-System
- Stromversorgung
- Schutzleiter

Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschiedliche Kopplungsmechanismen in Ihre Steuerung.

Man unterscheidet:

- galvanische Kopplung
- kapazitive Kopplung
- induktive Kopplung
- Strahlungskopplung

# Grundregeln zur Sicherstellung der EMV

Häufig genügt zur Sicherstellung der EMV das Einhalten einiger elementarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln.

- Achten Sie bei der Montage Ihrer Komponenten auf eine gut ausgeführte flächenhafte Massung der inaktiven Metallteile.
  - Stellen Sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutzleitersystem her.
  - Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm.
  - Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet.
- Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung.
  - Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversorgungs-, Signal- und Datenleitungen).
  - Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln.
  - Führen Sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche).

Aufbaurichtlinien

- Achten Sie auf die einwandfreie Befestigung der Leitungsschirme.
  - Datenleitungen sind geschirmt zu verlegen.
  - Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
  - Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
  - Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
  - Verwenden Sie für geschirmte Datenleitungen metallische oder metallisierte Steckergehäuse.
- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
  - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
  - Beachten Sie, dass bei Einsatz von Leuchtstofflampen sich diese negativ auf Signalleitungen auswirken können.
- Schaffen Sie ein einheitliches Bezugspotenzial und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
  - Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsmaßnahme.
  - Verbinden Sie Anlagenteile und Schränke mit Ihrer SPS sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
  - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.

#### Schirmung von Leitungen

Elektrische, magnetische oder elektromagnetische Störfelder werden durch eine Schirmung geschwächt; man spricht hier von einer Dämpfung. Über die mit dem Gehäuse leitend verbundene Schirmschiene werden Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störquelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich. Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:
  - die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann.
  - Analogsignale (einige mV bzw. μA) übertragen werden.
  - Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen für serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergehäuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/Schutzleiterschiene aufzulegen.
- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zu Ihrer SPS weiter, legen Sie ihn dort jedoch nicht erneut auf!

Allgemeine Daten



## **VORSICHT!**

## Bitte bei der Montage beachten!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen.

Abhilfe: Potenzialausgleichsleitung.

## 2.10 Allgemeine Daten

| Konformität und Approbation |            |                                                                                                             |  |  |
|-----------------------------|------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Konformität                 |            |                                                                                                             |  |  |
| CE                          | 2014/35/EU | Niederspannungsrichtlinie                                                                                   |  |  |
|                             | 2014/30/EU | EMV-Richtlinie                                                                                              |  |  |
| Approbation                 |            |                                                                                                             |  |  |
| UL                          | -          | Siehe Technische Daten                                                                                      |  |  |
| Sonstiges                   |            |                                                                                                             |  |  |
| RoHS                        | 2011/65/EU | Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten |  |  |

| Personenschutz und Geräteschutz     |   |                                       |  |  |
|-------------------------------------|---|---------------------------------------|--|--|
| Schutzart                           | - | IP20                                  |  |  |
| Potenzialtrennung                   |   |                                       |  |  |
| Zum Feldbus                         | - | Galvanisch entkoppelt                 |  |  |
| Zur Prozessebene                    | - | Galvanisch entkoppelt                 |  |  |
| Isolationsfestigkeit                | - | -                                     |  |  |
| Isolationsspannung gegen Bezugserde |   |                                       |  |  |
| Eingänge / Ausgänge                 | - | AC / DC 50V, bei Prüfspannung AC 500V |  |  |
| Schutzmaßnahmen                     | - | gegen Kurzschluss                     |  |  |

| Umgebungsbedingungen gemäß EN 61131-2 |               |                                              |  |  |
|---------------------------------------|---------------|----------------------------------------------|--|--|
| Klimatisch                            |               |                                              |  |  |
| Lagerung /Transport                   | EN 60068-2-14 | -25+70°C                                     |  |  |
| Betrieb                               |               |                                              |  |  |
| Horizontaler Einbau hängend           | EN 61131-2    | 0+60°C                                       |  |  |
| Horizontaler Einbau liegend           | EN 61131-2    | 0+55°C                                       |  |  |
| Vertikaler Einbau                     | EN 61131-2    | 0+50°C                                       |  |  |
| Luftfeuchtigkeit                      | EN 60068-2-30 | RH1 (ohne Betauung, relative Feuchte 10 95%) |  |  |
| Verschmutzung                         | EN 61131-2    | Verschmutzungsgrad 2                         |  |  |

Allgemeine Daten

| Umgebungsbedingungen gemäß EN 61131-2 |               |               |  |  |
|---------------------------------------|---------------|---------------|--|--|
| Aufstellhöhe max.                     | -             | 2000m         |  |  |
| Mechanisch                            |               |               |  |  |
| Schwingung                            | EN 60068-2-6  | 1g, 9Hz 150Hz |  |  |
| Schock                                | EN 60068-2-27 | 15g, 11ms     |  |  |

| Montagebedingungen |   |                         |  |
|--------------------|---|-------------------------|--|
| Einbauort          | - | Im Schaltschrank        |  |
| Einbaulage         | - | Horizontal und vertikal |  |

| EMV            | Norm         |                              | Bemerkungen                              |
|----------------|--------------|------------------------------|------------------------------------------|
| Störaussendung | EN 61000-6-4 |                              | Class A (Industriebereich)               |
| Störfestigkeit | EN 61000-6-2 |                              | Industriebereich                         |
| Zone B         |              | EN 61000-4-2                 | ESD                                      |
|                |              |                              | 8kV bei Luftentladung (Schärfegrad 3),   |
|                |              |                              | 4kV bei Kontaktentladung (Schärfegrad 2) |
|                |              | EN 61000-4-3                 | HF-Einstrahlung (Gehäuse)                |
|                |              |                              | 80MHz 1000MHz, 10V/m, 80% AM (1kHz)      |
|                |              |                              | 1,4GHz 2,0GHz, 3V/m, 80% AM (1kHz)       |
|                |              |                              | 2GHz 2,7GHz, 1V/m, 80% AM (1kHz)         |
|                |              | EN 61000-4-6                 | HF-Leitungsgeführt                       |
|                |              |                              | 150kHz 80MHz, 10V, 80% AM (1kHz)         |
|                |              | EN 61000-4-4<br>EN 61000-4-5 | Burst, Schärfegrad 3                     |
|                |              |                              | Surge, Schärfegrad 3 *                   |

<sup>\*)</sup> Aufgrund der energiereichen Einzelimpulse ist bei Surge eine angemessene externe Beschaltung mit Blitzschutzelementen wie z.B. Blitzstromableitern und Überspannungsableitern erforderlich.

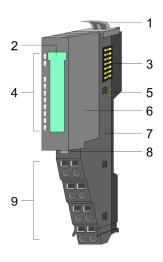
Aufbau

## 3 Hardwarebeschreibung

## 3.1 Leistungsmerkmale

## Eigenschaften

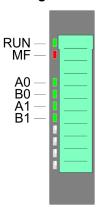
- 2 Zähler 32Bit (AB) invertierbar, DC 24V
- Zählfrequenz max. 400kHz
   (AB 1/2/4-fach Abtastung oder Impuls und Richtung)
- Vergleichswert, Setzwert, Eingangsfilter (parametrierbar)
- Alarm und Diagnosefunktion mit µs-Zeitstempel
- µs-Zeitstempel für Zählwert (z.B. für Geschwindigkeitsmessung)




#### **Bestelldaten**

| Тур    | Bestellnummer | Beschreibung                |
|--------|---------------|-----------------------------|
| FM 050 | 050-1BB00     | Zähler-Modul 2x32Bit DC 24V |

## 3.2 Aufbau


## 050-1BB00

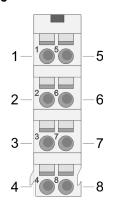


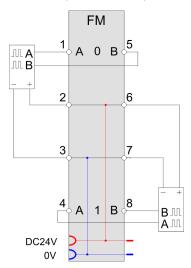
- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 3 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Aufbau

## Statusanzeige




| LED                                                    |           | Beschre                                                                        | eibung                                                |  |
|--------------------------------------------------------|-----------|--------------------------------------------------------------------------------|-------------------------------------------------------|--|
| RUN<br>grün                                            | MF<br>rot |                                                                                |                                                       |  |
| •                                                      | 0         | Bus-Kommunikation ist OK<br>Modul-Status ist OK                                |                                                       |  |
| •                                                      | •         |                                                                                | nmunikation ist OK<br>status meldet Fehler            |  |
| 0                                                      | •         |                                                                                | nmunikation nicht möglich<br>status meldet Fehler     |  |
| 0                                                      | 0         | Fehler E                                                                       | Busversorgungsspannung                                |  |
| X                                                      | В         | Konfigurationsfehler & Kapitel 2.8 "Hilfe zur Fehlersuche - LEDs" auf Seite 28 |                                                       |  |
|                                                        |           |                                                                                |                                                       |  |
| A0                                                     | grün      | •                                                                              | Zähler 0: Digitaler Eingang 1 A0/Impuls angesteuert   |  |
| В0                                                     | grün      | •                                                                              | Zähler 0: Digitaler Eingang 5 B0/Richtung angesteuert |  |
| A1                                                     | grün      | Zähler 1:  • Digitaler Eingang 4  A1/Impuls angesteuert                        |                                                       |  |
| B1                                                     | grün      | •                                                                              | Zähler 1: Digitaler Eingang 8 B1/Richtung angesteuert |  |
| an: ●   aus: ○   blinkend (2Hz): B   nicht relevant: X |           |                                                                                |                                                       |  |


HB300 | FM | 050-1BB00 | de | 16-50

Aufbau

## Anschlüsse

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².





| Pos. | Funktion | Тур | Beschreibung                                                                                                          |
|------|----------|-----|-----------------------------------------------------------------------------------------------------------------------|
| 1    | A0       | E   | Zähler 0: A / Impuls<br>Impulseingang für Zählsignal bzw. Spur A eines Gebers<br>für 1-, 2- oder 4-facher Auswertung. |
| 2    | DC 24V   | Α   | DC 24V für Geber                                                                                                      |
| 3    | 0V       | Α   | GND                                                                                                                   |
| 4    | A1       | E   | Zähler 1: A / Impuls Impulseingang für Zählsignal bzw. Spur A eines Gebers für 1-, 2- oder 4-facher Auswertung.       |
| 5    | В0       | Е   | Zähler 0: B / Richtung Richtungssignal bzw. Spur B eines Gebers (über Parametrierung invertierbar).                   |
| 6    | DC 24V   | Α   | DC 24V für Geber                                                                                                      |
| 7    | 0V       | Α   | GND                                                                                                                   |
| 8    | B1       | Е   | Zähler 1: B / Richtung Richtungssignal bzw. Spur B eines Gebers (über Parametrierung invertierbar).                   |

E: Eingang, A: Ausgang

Hardwarebeschreibung VIPA System SLIO

Technische Daten

## 3.3 Technische Daten

| Artikelnr.                                                | 050-1BB00          |
|-----------------------------------------------------------|--------------------|
| Bezeichnung                                               | FM 050             |
| Modulkennung                                              | 08C3 380A          |
| Stromaufnahme/Verlustleistung                             |                    |
| Stromaufnahme aus Rückwandbus                             | 75 mA              |
| Verlustleistung                                           | 0,9 W              |
| Technische Daten digitale Eingänge                        |                    |
| Anzahl Eingänge                                           | 4                  |
| Leitungslänge geschirmt                                   | 100 m              |
| Leitungslänge ungeschirmt                                 | -                  |
| Lastnennspannung                                          | DC 20,428,8 V      |
| Verpolschutz der Lastnennspannung                         | -                  |
| Stromaufnahme aus Lastspannung L+ (ohne Last)             | 15 mA              |
| Nennwert                                                  | DC 20,428,8 V      |
| Eingangsspannung für Signal "0"                           | DC 05 V            |
| Eingangsspannung für Signal "1"                           | DC 1528,8 V        |
| Eingangsspannung Hysterese                                | -                  |
| Frequenzbereich                                           | -                  |
| Eingangswiderstand                                        | -                  |
| Eingangsstrom für Signal "1"                              | 3 mA               |
| Anschluss von 2-Draht-BERO möglich                        | ✓                  |
| max. zulässiger BERO-Ruhestrom                            | 0,5 mA             |
| Eingangsverzögerung von "0" nach "1"                      | 0,8 μs             |
| Eingangsverzögerung von "1" nach "0"                      | 0,8 μs             |
| Anzahl gleichzeitig nutzbarer Eingänge waagrechter Aufbau | 4                  |
| Anzahl gleichzeitig nutzbarer Eingänge senkrechter Aufbau | 4                  |
| Eingangskennlinie                                         | IEC 61131-2, Typ 1 |
| Eingangsdatengröße                                        | 12 Byte            |
| Technische Daten digitale Ausgänge                        |                    |
| Anzahl Ausgänge                                           | -                  |
| Leitungslänge geschirmt                                   | -                  |
| Leitungslänge ungeschirmt                                 | -                  |
| Lastnennspannung                                          | -                  |
| Stromaufnahme aus Lastspannung L+ (ohne Last)             | -                  |
| Ausgangsverzögerung von "0" nach "1"                      | -                  |

Technische Daten

| Artikelnr.                                                 | 050-1BB00          |
|------------------------------------------------------------|--------------------|
| Ausgangsverzögerung von "1" nach "0"                       |                    |
| Mindestlaststrom                                           | -                  |
| Lampenlast                                                 |                    |
| Parallelschalten von Ausgängen zur redundanten Ansteuerung | -                  |
| Parallelschalten von Ausgängen zur Leistungserhöhung       | -                  |
| Ansteuern eines Digitaleingangs                            | -                  |
| Schaltfrequenz bei ohmscher Last                           | -                  |
| Schaltfrequenz bei induktiver Last                         | -                  |
| Schaltfrequenz bei Lampenlast                              | -                  |
| Begrenzung (intern) der induktiven Abschaltspannung        | -                  |
| Kurzschlussschutz des Ausgangs                             | -                  |
| Ansprechschwelle des Schutzes                              | -                  |
| Anzahl Schaltspiele der Relaisausgänge                     | -                  |
| Schaltvermögen der Relaiskontakte                          | -                  |
| Ausgangsdatengröße                                         | 12 Byte            |
| Technische Daten Zähler                                    |                    |
| Anzahl Zähler                                              | 2                  |
| Zählerbreite                                               | 32 Bit             |
| maximale Eingangsfrequenz                                  | 100 kHz            |
| maximale Zählfrequenz                                      | 400 kHz            |
| Betriebsart Inkrementalgeber                               | ✓                  |
| Betriebsart Impuls/Richtung                                | ✓                  |
| Betriebsart Impuls                                         | -                  |
| Betriebsart Frequenzmessung                                | -                  |
| Betriebsart Periodendauermessung                           | -                  |
| Gate-Anschluss möglich                                     | -                  |
| Latch-Anschluss möglich                                    | -                  |
| Reset-Anschluss möglich                                    | -                  |
| Zähler-Ausgang möglich                                     | -                  |
| Status, Alarm, Diagnosen                                   |                    |
| Statusanzeige                                              | ja                 |
| Alarme                                                     | ja, parametrierbar |
| Prozessalarm                                               | ja, parametrierbar |
| Diagnosealarm                                              | ja, parametrierbar |
| Diagnosefunktion                                           | ja, parametrierbar |

Hardwarebeschreibung VIPA System SLIO

Technische Daten

| Artikelnr.                                                    | 050-1BB00                  |
|---------------------------------------------------------------|----------------------------|
| Diagnoseinformation auslesbar                                 | möglich                    |
| Modulstatus                                                   | grüne LED                  |
| Modulfehleranzeige                                            | rote LED                   |
| Kanalfehleranzeige                                            | keine                      |
| Potenzialtrennung                                             |                            |
| zwischen den Kanälen                                          |                            |
| zwischen den Kanälen in Gruppen zu                            | -                          |
| zwischen Kanälen und Rückwandbus                              | ✓                          |
| zwischen Kanälen und Spannungsversorgung                      |                            |
| max. Potenzialdifferenz zwischen Stromkreisen                 |                            |
| max. Potenzialdifferenz zwischen Eingängen (Ucm)              | +                          |
| max. Potenzialdifferenz zwischen Mana und Mintern (Uiso)      |                            |
| max. Potenzialdifferenz zwischen Eingängen und Mana (Ucm)     | -                          |
| max. Potenzialdifferenz zwischen Eingängen und Mintern (Uiso) | -                          |
| max. Potenzialdifferenz zwischen Mintern und Ausgängen        | -                          |
| Isolierung geprüft mit                                        | DC 500 V                   |
| Datengrößen                                                   |                            |
| Eingangsbytes                                                 | 12                         |
| Ausgangsbytes                                                 | 12                         |
| Parameterbytes                                                | 45                         |
| Diagnosebytes                                                 | 20                         |
| Gehäuse                                                       |                            |
| Material                                                      | PPE / PPE GF10             |
| Befestigung                                                   | Profilschiene 35mm         |
| Mechanische Daten                                             |                            |
| Abmessungen (BxHxT)                                           | 12,9 mm x 109 mm x 76,5 mm |
| Gewicht Netto                                                 | 60 g                       |
| Gewicht inklusive Zubehör                                     | -                          |
| Gewicht Brutto                                                | -                          |
| Umgebungsbedingungen                                          |                            |
| Betriebstemperatur                                            | 0 °C bis 60 °C             |
| Lagertemperatur                                               | -25 °C bis 70 °C           |
| Zertifizierungen                                              |                            |
| Zertifizierung nach UL                                        | ja                         |
| Zertifizierung nach KC                                        | ja                         |

Schnelleinstieg

### 4 Einsatz

### 4.1 Schnelleinstieg

#### Zählbereich

| Grenzen           | Gültiger Wertebereich               |
|-------------------|-------------------------------------|
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )  |
| Obere Zählgrenze  | +2 147 483 647 (2 <sup>31</sup> -1) |

Die maximale Zählfrequenz beträgt 400kHz.

#### Adressbereiche

#### Eingabebereich

Bei CPU, PROFIBUS und PROFINET wird der Eingabebereich im entsprechenden Adressbereich eingeblendet.

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

| Adr. | Name    | Bytes | Funktion     | IX        | SX  |
|------|---------|-------|--------------|-----------|-----|
| +0   | CV_I    | 4     | Zähler 0:    | 5400h/s   | 01h |
|      |         |       | Zählerwert   |           |     |
| +4   | CV_II   | 4     | Zähler 1:    | 5400h/s+1 | 02h |
|      |         |       | Zählerwert   |           |     |
| +8   | CSTS_I  | 2     | Zähler 0:    | 5402h/s   | 03h |
|      |         |       | Zählerstatus |           |     |
| +10  | CSTS_II | 2     | Zähler 1:    | 5402h/s+1 | 04h |
|      |         |       | Zählerstatus |           |     |

#### Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

| Adr. | Name  | Bytes | Funktion       | IX        | SX  |
|------|-------|-------|----------------|-----------|-----|
| +0   | CC_I  | 4     | Zähler 0:      | 5600h/s   | 01h |
|      |       |       | Vergleichswert |           |     |
| +4   | CC_II | 4     | Zähler 1:      | 5600h/s+1 | 02h |
|      |       |       | Vergleichswert |           |     |

Schnelleinstieg

| Adr. | Name     | Bytes | Funktion     | IX        | SX  |
|------|----------|-------|--------------|-----------|-----|
| +8   | CCTRL_I  | 2     | Zähler 0:    | 5602h/s   | 03h |
|      |          |       | Control-Wort |           |     |
| +10  | CCTRL_II | 2     | Zähler 1:    | 5602h/s+1 | 04h |
|      |          |       | Control-Wort |           |     |

# CSTS\_I, CSTS\_II Zählerstatus

| Bit                                                                              | Name          | Funktion                                                               |  |  |
|----------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------|--|--|
| 0                                                                                | -             | reserviert                                                             |  |  |
| 1                                                                                | STS_CTRL_COMP | ist gesetzt, wenn das <i>Vergleichsbit</i> freigegeben ist             |  |  |
| 2                                                                                | STS_SW-GATE   | Status Softwaretor                                                     |  |  |
|                                                                                  |               | (gesetzt, wenn SW-Tor aktiv)                                           |  |  |
| 34                                                                               | -             | reserviert                                                             |  |  |
| 5                                                                                | STS_GATE      | Status internes Tor                                                    |  |  |
|                                                                                  |               | (gesetzt, wenn internes Tor aktiv)                                     |  |  |
| 6                                                                                | STS_COMP      | Status Vergleichsbit                                                   |  |  |
| 7                                                                                | STS_C_DN      | Status gesetzt                                                         |  |  |
|                                                                                  |               | bei Zähler-Richtung rückwärts                                          |  |  |
| 8                                                                                | STS_C_UP      | Status gesetzt                                                         |  |  |
|                                                                                  |               | bei Zähler-Richtung vorwärts                                           |  |  |
| 9                                                                                | STS_CMP*      | Status Vergleicher wird gesetzt, wenn Vergleichsbedingung erfüllt ist. |  |  |
|                                                                                  |               | Ist Vergleich <i>nie</i> parametriert, wird das Bit nie gesetzt.       |  |  |
| 10                                                                               | STS_END*      | Status gesetzt, wenn Endwert erreicht wurde                            |  |  |
| 11                                                                               | STS_OFLW*     | Status gesetzt bei Überlauf                                            |  |  |
| 12                                                                               | STS_UFLW*     | Status gesetzt bei Unterlauf                                           |  |  |
| 13                                                                               | STS_ZP*       | Status gesetzt bei Nulldurchgang                                       |  |  |
| 1415                                                                             | -             | reserviert                                                             |  |  |
| *) Die Bits bleiben bis zum Rücksetzen mit RES_SET (Bit 6 Control-Wort) gesetzt. |               |                                                                        |  |  |

CCTRL\_I, CCTRL\_II Control-Wort

| Bit | Name           | Funktion                                        |
|-----|----------------|-------------------------------------------------|
| 0   | -              | reserviert                                      |
| 1   | CTRL_COMP_SET  | Freigabe des Vergleichsbits                     |
| 2   | SW_GATE_SET    | Softwaretor setzen                              |
| 34  | -              | reserviert                                      |
| 5   | COUNTERVAL_SET | Zähler temporär auf den Wert im Setzwert setzen |

Schnelleinstieg

| Bit  | Name            | Funktion                    |
|------|-----------------|-----------------------------|
| 6    | RES_SET         | Rücksetzen der Bits         |
|      |                 | STS_END, STS_OFLW,          |
|      |                 | STS_UFLW                    |
|      |                 | und STS_ZP mit Flanke 0-1   |
| 78   | -               | reserviert                  |
| 9    | CTRL_COMP_RESET | Deaktiviert den Reset-Modus |
| 10   | SW_GATE_RESET   | Softwaretor rücksetzen      |
| 1115 | -               | reserviert                  |

#### **Parameter**

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

| Name     | Bytes | Funktion                    | Default | DS  | IX             | SX  |
|----------|-------|-----------------------------|---------|-----|----------------|-----|
| DIAG_EN  | 1     | Diagnosealarm*              | 00h     | 00h | 3100h          | 01h |
| CH0A     | 1     | Z0: Eingangsfrequenz Spur A | 02h     | 01h | 3101h          | 02h |
| CH1B     | 1     | Z0: Eingangsfrequenz Spur B | 02h     | 01h | 3102h          | 03h |
| CH2A     | 1     | Z1: Eingangsfrequenz Spur A | 02h     | 01h | 3103h          | 04h |
| CH3B     | 1     | Z1: Eingangsfrequenz Spur B | 02h     | 01h | 3104h          | 05h |
| INT_I    | 1     | Z0: Alarmverhalten*         | 00h     | 80h | 3105h          | 06h |
| FCT_I    | 1     | Z0: Zählerfunktion*         | 00h     | 80h | 3106h          | 07h |
| MODE2_I  | 1     | Z0: Zählermodus 2*          | 00h     | 80h | 3107h          | 08h |
| MODE3_I  | 1     | Z0:Zählermodus 3*           | 00h     | 80h | 3108h          | 09h |
| SET_I    | 4     | Z0: Setzwert                | 00h     | 81h | 3109h<br>310Ch | 0Ah |
| END_I    | 4     | Z0: Endwert                 | 00h     | 81h | 310Dh<br>3110h | 0Bh |
| LOAD_I   | 4     | Z0: Ladewert                | 00h     | 81h | 3111h<br>3114h | 0Ch |
| HYST_I   | 1     | Z0: Hysterese               | 00h     | 81h | 3115h          | 0Dh |
| CRES     | 1     | reserviert                  | 00h     | 81h | 3116h          | 0Eh |
| INT_II   | 1     | Z1: Alarmverhalten*         | 00h     | 82h | 3117h          | 0Fh |
| FCT_II   | 1     | Z1: Zählerfunktion*         | 00h     | 82h | 3118h          | 10h |
| MODE2_II | 1     | Z1: Zählermodus 2*          | 00h     | 82h | 3119h          | 11h |
| MODE3_II | 1     | Z1: Zählermodus 3*          | 00h     | 82h | 311Ah          | 12h |

Ein-/Ausgabe-Bereich > Eingabebereich 12Byte

| Name                     | Bytes              | Funktion                          | Default | DS  | IX             | SX  |
|--------------------------|--------------------|-----------------------------------|---------|-----|----------------|-----|
| SET_II                   | 4                  | Z1: Setzwert                      | 00h     | 83h | 311Bh<br>311Eh | 13h |
| END_II                   | 4                  | Z1: Endwert                       | 00h     | 83h | 311Fh<br>3112h | 14h |
| LOAD_II                  | 4                  | Z1: Ladewert                      | 00h     | 83h | 3113h<br>3116h | 15h |
| HYST_II                  | 1                  | Z1: Hysterese                     | 00h     | 83h | 3117h          | 16h |
| CRES                     | 1                  | reserviert                        | 00h     | 83h | 3118h          | 17h |
| *) Diesen Parameter dürf | fen Sie ausschließ | slich im STOP-Zustand übertragen. |         |     |                |     |

#### Zähler steuern

Gesteuert wird der Zähler über das interne Tor (I-Tor). Das I-Tor entspricht dem Softwaretor (SW-Tor).

#### SW-Tor:

Öffnen (aktivieren):

Im Anwenderprogramm durch Flanke 0-1 von SW\_GATE\_SET im *Control-Wort* Schließen (deaktivieren):

Im Anwenderprogramm durch Flanke 0-1 von SW\_GATE\_RESET im Control-Wort

#### Vergleichsbit

Folgendes Verhalten können Sie für das *Vergleichsbit* STS\_COMP im *Zählerstatus* über die Parametrierung einstellen:

- Kein Vergleich: Vergleichsbit wird nicht beeinflusst.
- Zählerwert ≥ Vergleichswert: Vergleichsbit wird gesetzt
- Zählerwert ≤ Vergleichswert: Vergleichsbit wird gesetzt
- Zählerwert = Vergleichswert: Vergleichsbit wird gesetzt

Bitte beachten Sie, dass nur dann das *Vergleichsbit* gesetzt wird, wenn im *Zählerstatus* das Bit STS\_CTRL\_COMP gesetzt ist.

### 4.2 Ein-/Ausgabe-Bereich

#### 4.2.1 Eingabebereich 12Byte

#### Eingabebereich

Bei CPU, PROFIBUS und PROFINET wird der Eingabebereich im entsprechenden Adressbereich eingeblendet.

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 6000h + EtherCAT-Slot

| Adr. | Name  | Bytes | Funktion   | IX        | SX  |
|------|-------|-------|------------|-----------|-----|
| +0   | CV_I  | 4     | Zähler 0:  | 5400h/s   | 01h |
|      |       |       | Zählerwert |           |     |
| +4   | CV_II | 4     | Zähler 1:  | 5400h/s+1 | 02h |
|      |       |       | Zählerwert |           |     |

Ein-/Ausgabe-Bereich > Ausgabebereich 12Byte

| Adr. | Name    | Bytes | Funktion     | IX        | SX  |
|------|---------|-------|--------------|-----------|-----|
| +8   | CSTS_I  | 2     | Zähler 0:    | 5402h/s   | 03h |
|      |         |       | Zählerstatus |           |     |
| +10  | CSTS_II | 2     | Zähler 1:    | 5402h/s+1 | 04h |
|      |         |       | Zählerstatus |           |     |

#### CV\_I CV\_II Zählerwert

Der Zählerwert beinhaltet immer den aktuellen Zählerstand des entsprechenden Zählers.

#### CSTS\_I CSTS\_II Zählerstatus

| Bit                                                                              | Name          | Funktion                                                               |
|----------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------|
| 0                                                                                | -             | reserviert                                                             |
| 1                                                                                | STS_CTRL_COMP | ist gesetzt, wenn das <i>Vergleichsbit</i> freigegeben ist             |
| 2                                                                                | STS_SW-GATE   | Status Softwaretor                                                     |
|                                                                                  |               | (gesetzt, wenn <i>SW-Tor</i> aktiv)                                    |
| 3 4                                                                              | -             | reserviert                                                             |
| 5                                                                                | STS_GATE      | Status internes Tor                                                    |
|                                                                                  |               | (gesetzt, wenn internes Tor aktiv)                                     |
| 6                                                                                | STS_COMP      | Status Vergleichsbit                                                   |
| 7                                                                                | STS_C_DN      | Status gesetzt                                                         |
|                                                                                  |               | bei Zähler-Richtung rückwärts                                          |
| 8                                                                                | STS_C_UP      | Status gesetzt                                                         |
|                                                                                  |               | bei Zähler-Richtung vorwärts                                           |
| 9                                                                                | STS_CMP*      | Status Vergleicher wird gesetzt, wenn Vergleichsbedingung erfüllt ist. |
|                                                                                  |               | Ist Vergleich nie parametriert, wird das Bit <i>nie</i> gesetzt.       |
| 10                                                                               | STS_END*      | Status gesetzt, wenn Endwert erreicht wurde                            |
| 11                                                                               | STS_OFLW*     | Status gesetzt bei Überlauf                                            |
| 12                                                                               | STS_UFLW*     | Status gesetzt bei Unterlauf                                           |
| 13                                                                               | STS_ZP*       | Status gesetzt bei Nulldurchgang                                       |
| 14 15                                                                            | -             | reserviert                                                             |
| *) Die Bits bleiben bis zum Rücksetzen mit RES_SET (Bit 6 Control-Wort) gesetzt. |               |                                                                        |

### 4.2.2 Ausgabebereich 12Byte

#### Ausgabebereich

Bei CPU, PROFIBUS und PROFINET wird der Ausgabebereich im entsprechenden Adressbereich eingeblendet.

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 7000h + EtherCAT-Slot

Parametrierdaten

| Adr. | Name    | Bytes | Funktion        | IX        | SX  |
|------|---------|-------|-----------------|-----------|-----|
| +0   | CV_I    | 4     | Zähler 0:       | 5600h/s   | 01h |
|      |         |       | Vergleichswert  |           |     |
| +4   | CV_II   | 4     | Zähler 1:       | 5600h/s+1 | 02h |
|      |         |       | Vergleich swert |           |     |
| +8   | CSTS_I  | 2     | Zähler 0:       | 5602h/s   | 03h |
|      |         |       | Control-Wort    |           |     |
| +10  | CSTS_II | 2     | Zähler 1:       | 5602h/s+1 | 04h |
|      |         |       | Control-Wort    |           |     |

#### CC\_I CC\_II Vergleichswert

Mit *Vergleichswert* können Sie einen Wert vorgeben, der durch den Vergleich mit dem aktuellen *Zählerstand* das *Vergleichsbit* beeinflussen bzw. einen Prozessalarm auslösen kann. Das Verhalten des *Vergleichsbits* STS\_COMP im *Zählerstatus* bzw. des Prozessalarms ist hierbei über den Parameter INT\_I für Zähler 0 und INT\_II für Zähler 1 vorzugeben.

# CCTRL\_I CCTRL\_II Control-Wort

| Bit      | Name            | Funktion                                                                                    |
|----------|-----------------|---------------------------------------------------------------------------------------------|
| 0        | -               | reserviert                                                                                  |
| 1        | CTRL_COMP_SET   | Freigabe des Vergleichsbits                                                                 |
| 2        | SW_GATE_SET     | Softwaretor setzen                                                                          |
| 3 4      | -               | reserviert                                                                                  |
| 5        | COUNTERVAL_SET  | Zähler temporär auf den Wert im Setzwert setzen                                             |
| 6        | RES_SET         | Rücksetzen der Bits STS_CMP,<br>STS_END, STS_OFLW,<br>STS_UFLW und STS_ZP<br>mit Flanke 0-1 |
| 7 8      | -               | reserviert                                                                                  |
| 9        | CTRL_COMP_RESET | Deaktiviert das Vergleichsbit                                                               |
| 10       | SW_GATE_RESET   | Softwaretor rücksetzen                                                                      |
| 11<br>15 | -               | reserviert                                                                                  |

#### 4.3 Parametrierdaten

Über die Parameter definieren Sie unter anderem:

- Alarmverhalten
- Eingangsfilter
- Zählerbetriebsart bzw. -verhalten

Parametrierdaten

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

#### **Parameter**

| Name                                                                      | Bytes | Funktion                       | Default | DS  | IX         | SX  |
|---------------------------------------------------------------------------|-------|--------------------------------|---------|-----|------------|-----|
| DIAG_EN                                                                   | 1     | Diagnosealarm*                 | 00h     | 00h | 3100h      | 01h |
| CH0A                                                                      | 1     | Z0: Eingangsfrequenz<br>Spur A | 02h     | 01h | 3101h      | 02h |
| CH1B                                                                      | 1     | Z0: Eingangsfrequenz<br>Spur B | 02h     | 01h | 3102h      | 03h |
| CH2A                                                                      | 1     | Z1: Eingangsfrequenz<br>Spur A | 02h     | 01h | 3103h      | 04h |
| CH3B                                                                      | 1     | Z1: Eingangsfrequenz<br>Spur B | 02h     | 01h | 3104h      | 05h |
| INT_I                                                                     | 1     | Z0: Alarmverhalten*            | 00h     | 80h | 3105h      | 06h |
| FCT_I                                                                     | 1     | Z0: Zählerfunktion*            | 00h     | 80h | 3106h      | 07h |
| MODE2_I                                                                   | 1     | Z0: Zählermodus 2*             | 00h     | 80h | 3107h      | 08h |
| MODE3_I                                                                   | 1     | Z0: Zählermodus 3*             | 00h     | 80h | 3108h      | 09h |
| SET_I                                                                     | 4     | Z0: Setzwert                   | 00h     | 81h | 3109h310Ch | 0Ah |
| END_I                                                                     | 4     | Z0: Endwert                    | 00h     | 81h | 310Dh3110h | 0Bh |
| LOAD_I                                                                    | 4     | Z0: Ladewert                   | 00h     | 81h | 3111h3114h | 0Ch |
| HYST_I                                                                    | 1     | Z0: Hysterese                  | 00h     | 81h | 3115h      | 0Dh |
| CRES                                                                      | 1     | reserviert                     | 00h     | 81h | 3116h      | 0Eh |
| INT_II                                                                    | 1     | Z1: Alarmverhalten*            | 00h     | 82h | 3117h      | 0Fh |
| FCT_II                                                                    | 1     | Z1: Zählerfunktion*            | 00h     | 82h | 3118h      | 10h |
| MODE2_II                                                                  | 1     | Z1: Zählermodus 2*             | 00h     | 82h | 3119h      | 11h |
| MODE3_II                                                                  | 1     | Z1: Zählermodus 3*             | 00h     | 82h | 311Ah      | 12h |
| SET_II                                                                    | 4     | Z1: Setzwert                   | 00h     | 83h | 311Bh311Eh | 13h |
| END_II                                                                    | 4     | Z1: Endwert                    | 00h     | 83h | 311Fh3122h | 14h |
| LOAD_II                                                                   | 4     | Z1: Ladewert                   | 00h     | 83h | 3123h3126h | 15h |
| HYST_II                                                                   | 1     | Z1: Hysterese                  | 00h     | 83h | 3127h      | 16h |
| CRES                                                                      | 1     | reserviert                     | 00h     | 83h | 3128h      | 17h |
| *) Diesen Parameter dürfen Sie ausschließlich im STOP-Zustand übertragen. |       |                                |         |     |            |     |

Parametrierdaten

#### **DIAG\_EN Diagnosealarm**

| Byte | Bit 70                                            |
|------|---------------------------------------------------|
| 0    | Diagnosealarm  ■ 00h = sperren  ■ 40h = freigeben |

Hier aktivieren bzw. deaktivieren Sie die Diagnosefunktion.

#### **CHxx Eingangsfrequenz**

| Byte | Funktion                   | Mögliche Werte                                                                                                 |
|------|----------------------------|----------------------------------------------------------------------------------------------------------------|
| 0    | Eingangsfrequenz Z0 Spur A | ■ 02h: 100kHz                                                                                                  |
| 1    | Eingangsfrequenz Z0 Spur B | <ul><li>03h: 60kHz</li><li>04h: 30kHz</li></ul>                                                                |
| 2    | Eingangsfrequenz Z1 Spur A | ■ 06h: 10kHz                                                                                                   |
| 3    | Eingangsfrequenz Z1 Spur B | <ul> <li>07h: 5kHz</li> <li>08h: 2kHz</li> <li>09h: 1kHz</li> <li>Andere Werte sind nicht zulässig!</li> </ul> |

Durch Angabe der Eingangsfrequenz können Sie hier einen Filter für die Eingänge E1, E4, E5 und E8 vorgeben. Mittels Filter lassen sich beispielsweise Signal-Spitzen (Peaks) bei unsauberem Eingangssignal filtern.

# INT\_I/II, Z0/Z1: Alarmverhalten

| Byte | Bit 7 0                                                                                                                                                              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | Bit 5 0: Alarmverhalten  Bit 0: 0 (fix) Bit 1: 0 (fix) Bit 2: ProzAlarm Überlauf Bit 3: ProzAlarm Unterlauf Bit 4: ProzAlarm Vergleichswert Bit 5: ProzAlarm Endwert |
|      | ■ <i>Bit 7</i> 6: 0 (fix)                                                                                                                                            |

Das Setzen des entsprechenden Bits aktiviert den zugehörigen Prozessalarm.

# FCT\_I/II, Z0/Z1: Zähle-rfunktion

46

| Byte | Bit 7 0                                                                                                                                                                                                                                                                            |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | ■ Bit 5 0: Zählerfunktion  - 000000b = Endlos zählen  - 000001b = Einmalig: vorwärts  - 000010b = Einmalig: rückwärts  - 000100b = Einmalig: keine Hauptrichtung  - 001000b = Periodisch: vorwärts  - 010000b = Periodisch: rückwärts  - 100000b = Periodisch: keine Hauptrichtung |
|      | = 1000000 = Periodiscri. Reine Haupthoritung ■ Bit 7 6: 0 (fix)                                                                                                                                                                                                                    |

Zähler - Funktionen

### MODE2\_I/II, Z0/Z1: Zähler-modus 2

| Byte | Bit 7 0                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | <ul> <li>Bit 2 0: Vergleichsbit wird gesetzt ( bei folgender Bedingung)         <ul> <li>000b = nie</li> <li>001b = Zählerwert ≥ Vergleichswert</li> <ul> <li>010b = Zählerwert ≤ Vergleichswert</li> <li>100b = Zählerwert = Vergleichswert</li> <li>Bit 3: Zählrichtung Spur B invertieren</li> <li>0 = Nein (nicht invertieren)</li> <li>1 = Ja (invertieren)</li> <li>8it 7 4: 0 (fix)</li> <li>Bit 7 4: 0 (fix)</li> </ul> </ul></li> </ul> |

### MODE3\_I/II, Z0/Z1: Zähler-modus 3

| Byte | Bit 7 0                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | <ul> <li>Bit 2 0: Signalauswertung <ul> <li>000b = Zähler deaktiviert</li> <li>001b = Drehgeber 1-fach (an A und B)</li> <li>010b = Drehgeber 2-fach (an A und B)</li> <li>011b = Drehgeber 4-fach (an A und B)</li> <li>100b = Richtung (Impuls an A und Richtung an B)</li> </ul> </li> <li>Bit 6 3: 0 (fix)</li> <li>Bit 7: Torfunktion (internes Tor) <ul> <li>0 = abbrechen</li> <li>1 = unterbrechen</li> </ul> </li> </ul> |

- Bei deaktiviertem Zähler werden die weiteren Parameterangaben für den Zähler ignoriert.
- Bei Torfunktion "abbrechen" beginnt der Zählvorgang wieder ab dem Ladewert. Bei "unterbrechen" wird der Zählvorgang mit dem Zählerstand fortgesetzt.

#### SET I/II, Z0/Z1: Setzwert

Sie haben die Möglichkeit durch Angabe eines Setzwerts den Zähler mit dem Setzwert zu laden. Mit einer Flanke 0-1 an COUNTERVAL\_SET im Control-Wort wird der Setzwert in den Zähler übernommen.

# LOAD\_I/II Ladewert, END\_I/II Endwert, Z0/Z1

Durch Angabe eines *Lade-* bzw. *Endwerts* können Sie den Zählbereich nach oben bzw. unten begrenzen.

### HYST\_I/II, Z0/Z1: Hysterese

Die *Hysterese* dient z.B. zur Vermeidung von häufigen Schaltvorgängen des *Vergleichsbits* und des Alarms, wenn der *Zählerwert* im Bereich des *Vergleichswertes* liegt. Für die *Hysterese* können Sie einen Bereich zwischen 0 und 255 vorgeben. Mit 0 und 1 ist die *Hysterese* abgeschaltet. Die Hysterese wirkt auf Nulldurchgang, Vergleich, Über- und Unterlauf.

#### 4.4 Zähler - Funktionen

#### Übersicht

Sie können vorwärts und rückwärts zählen und hierbei zwischen folgenden Zählerfunktionen wählen:

- Endlos Zählen, z.B. zur Wegerfassung mit Inkrementalgebern
- Einmalig Zählen, z.B. Stückguterfassung bis zu einer maximalen Grenze
- Periodisch Zählen, z.B. Anwendungen mit wiederholten Zählvorgängen

Zähler - Funktionen

In den Betriebsarten "Einmalig Zählen" und "Periodisch Zählen" können Sie über die Parametrierung einen Zählerbereich als Start- bzw. Endwert definieren. Für den Zähler stehen Ihnen parametrierbare Zusatzfunktionen zur Verfügung wie z.B. Tor-Funktion, Vergleicher, Hysterese und Prozessalarm.

#### Hauptzählrichtung

Über die Parametrierung haben Sie die Möglichkeit für den Zähler eine Hauptzählrichtung anzugeben. Ist "keine" angewählt, steht Ihnen der gesamte Zählbereich zur Verfügung:

| Grenzen           | Gültiger Wertebereich               |
|-------------------|-------------------------------------|
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )  |
| Obere Zählgrenze  | +2 147 483 647 (2 <sup>31</sup> -1) |

#### Hauptzählrichtung vorwärts

Einschränkung des Zählbereiches nach oben. Der Zähler zählt 0 bzw. Ladewert in positiver Richtung bis zum parametrierten Endwert -1 und springt dann mit dem darauffolgenden Geberimpuls wieder auf den Ladewert.

#### Hauptzählrichtung rückwärts

Einschränkung des Zählbereiches nach unten. Der Zähler zählt vom parametrierten Startbzw. Ladewert in negativer Richtung bis zum parametrierten Endwert +1 und springt dann mit dem darauffolgenden Geberimpuls wieder auf den Startwert.

### Torfunktion abbrechen / unterbrechen

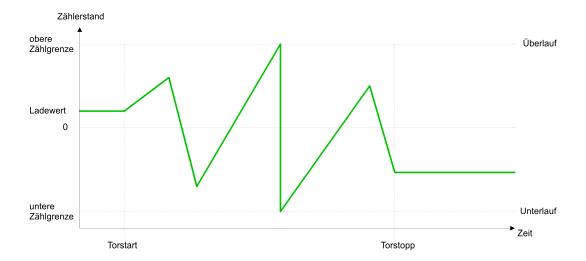
Ein Öffnen und Schließen des SW-Tors wirkt abbrechend oder unterbrechend.

#### Zählvorgang abbrechen

Der Zählvorgang beginnt nach Schließen des Tors und erneutem Torstart wieder ab dem Ladewert.

#### Zählvorgang unterbrechen

Der Zählvorgang wird nach Schließen des Tors und erneutem Torstart beim letzten aktuellen Zählerstand fortgesetzt.


#### **Endlos Zählen**

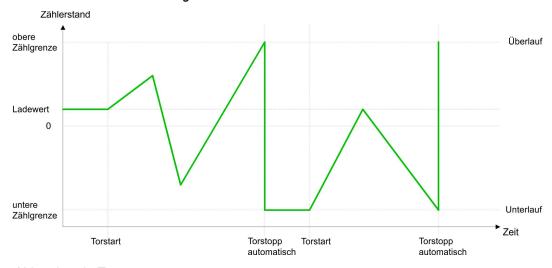
In dieser Betriebsart zählt der Zähler ab dem Ladewert. Erreicht der Zähler beim Vorwärtszählen die obere Zählgrenze und kommt ein weiterer Zählimpuls in positiver Richtung, springt er auf die untere Zählgrenze und zählt von dort weiter. Erreicht der Zähler beim Rückwärtszählen die untere Zählgrenze und kommt ein weiterer negativer Zählimpuls, springt er auf die obere Zählgrenze und zählt von dort weiter. Die Zählgrenzen sind auf den maximalen Zählbereich fest eingestellt.

| Grenzen           | Gültiger Wertebereich               |
|-------------------|-------------------------------------|
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )  |
| Obere Zählgrenze  | +2 147 483 647 (2 <sup>31</sup> -1) |

Bei Über- bzw. Unterschreitung werden die Status-Bits STS\_OFLW bzw. STS\_UFLW gesetzt. Diese Bits bleiben gesetzt, bis diese mit RES\_STS wieder zurückgesetzt werden. Falls freigegeben, wird zusätzlich ein Prozessalarm ausgelöst.

Zähler - Funktionen




#### Einmalig Zählen

#### Keine Hauptzählrichtung

- Der Zähler zählt ab dem Ladewert einmalig.
- Es wird vorwärts oder rückwärts gezählt.
- Die Zählgrenzen sind auf den maximalen Zählbereich fest eingestellt.
- Bei Über- oder Unterlauf an den Zählgrenzen springt der Zähler auf die jeweils andere Zählgrenze und das Tor wird automatisch geschlossen.
- Zum erneuten Start des Zählvorgangs müssen Sie eine positive Flanke des Tors erzeugen.
- Bei unterbrechender Torsteuerung wird der Zählvorgang beim aktuellen Zählstand fortgesetzt.
- Bei abbrechender Torsteuerung beginnt der Zähler ab dem Ladewert.

| Grenzen           | Gültiger Wertebereich               |
|-------------------|-------------------------------------|
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )  |
| Obere Zählgrenze  | +2 147 483 647 (2 <sup>31</sup> -1) |

#### Unterbrechende Torsteuerung:



Abbrechende Torsteuerung:

Zähler - Funktionen



#### Hauptzählrichtung vorwärts

- Der Zähler zählt ab dem Ladewert vorwärts.
- Erreicht der Zähler in positiver Richtung den Endwert -1, springt er beim nächsten Zählimpuls auf den Ladewert und das interne Tor wird automatisch geschlossen. Falls freigegeben, wird zusätzlich ein Prozessalarm ausgelöst.
- Zum erneuten Start des Zählvorgangs müssen Sie das interne Tor wieder öffnen. Der Zähler beginnt ab dem Ladewert.
- Sie können über die untere Zählgrenze hinaus zählen.

| Grenzen           | Gültiger Wertebereich                   |
|-------------------|-----------------------------------------|
| Endwert           | -2 147 483 647 (-2 <sup>31</sup> +1)    |
|                   | bis +2 147 483 647 (2 <sup>31</sup> -1) |
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )      |



#### Hauptzählrichtung rückwärts

- Der Zähler zählt ab dem Ladewert rückwärts.
- Erreicht der Zähler in negativer Richtung den Endwert +1, springt er beim nächsten Zählimpuls auf den Ladewert und das interne Tor wird automatisch geschlossen. Falls freigegeben, wird zusätzlich ein Prozessalarm ausgelöst.
- Zum erneuten Start des Zählvorgangs müssen Sie das interne Tor wieder öffnen. Der Zähler beginnt ab dem Ladewert.
- Sie können über die obere Zählgrenze hinaus zählen.

Zähler - Funktionen

| Grenzen          | Gültiger Wertebereich                   |
|------------------|-----------------------------------------|
| Endwert          | -2 147 483 648 (-2 <sup>31</sup> )      |
|                  | bis +2 147 483 646 (2 <sup>31</sup> -2) |
| Obere Zählgrenze | +2 147 483 647 (2 <sup>31</sup> -1)     |



#### Periodisch Zählen

#### Keine Hauptzählrichtung

- Der Zähler zählt ab Ladewert vorwärts oder rückwärts.
- Beim Über- oder Unterlauf an der jeweiligen Zählgrenze springt der Zähler zum Ladewert und zählt von dort weiter. Falls freigegeben, wird zusätzlich ein Prozessalarm ausgelöst.
- Die Zählgrenzen sind auf den maximalen Zählbereich fest eingestellt.

| Grenzen           | Gültiger Wertebereich               |
|-------------------|-------------------------------------|
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )  |
| Obere Zählgrenze  | +2 147 483 647 (2 <sup>31</sup> -1) |



Zähler - Funktionen

#### Hauptzählrichtung vorwärts

- Der Zähler zählt ab dem Ladewert vorwärts.
- Erreicht der Zähler in positiver Richtung den Endwert -1, springt er beim nächsten positiven Zählimpuls auf den Ladewert und zählt von dort weiter. Falls freigegeben, wird zusätzlich ein Prozessalarm ausgelöst.
- Sie können über die untere Zählgrenze hinaus zählen.

| Grenzen           | Gültiger Wertebereich                   |
|-------------------|-----------------------------------------|
| Endwert           | -2 147 483 647 (-2 <sup>31</sup> +1)    |
|                   | bis +2 147 483 647 (2 <sup>31</sup> -1) |
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )      |



#### Hauptzählrichtung rückwärts

- Der Zähler zählt ab dem Ladewert rückwärts.
- Erreicht der Zähler in negativer Richtung den *Endwert* +1, springt er beim nächsten negativen Zählimpuls auf den *Ladewert* und zählt von dort weiter. Falls freigegeben, wird zusätzlich ein Prozessalarm ausgelöst.
- Sie können über die obere Zählgrenze hinaus zählen.

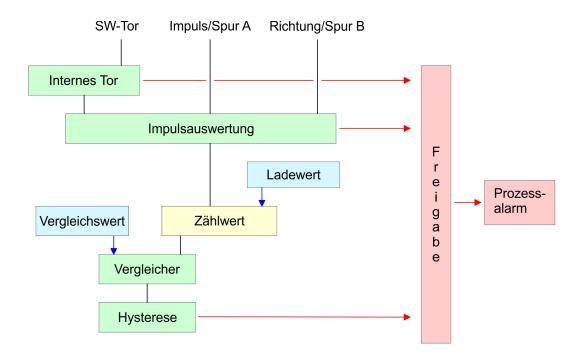
| Grenzen          | Gültiger Wertebereich                   |
|------------------|-----------------------------------------|
| Endwert          | -2 147 483 648 (-2 <sup>31</sup> )      |
|                  | bis +2 147 483 646 (2 <sup>31</sup> -2) |
| Obere Zählgrenze | +2 147 483 647 (2 <sup>31</sup> -1)     |

Zähler Zusatzfunktionen



#### 4.5 Zähler Zusatzfunktionen

#### Übersicht


Die nachfolgend aufgeführten Zusatzfunktionen können Sie für jeden Zähler über die Parametrierung einstellen:

- Tor-Funktion:
  - Die Tor-Funktion dient zum Starten, Stoppen und Unterbrechen einer Zählfunktion.
- Vergleicher:
  - Sie können einen Vergleichswert angeben, der abhängig vom Zählerwert den Zustand des Vergleichsbits beeinflusst bzw. einen Prozessalarm auslöst.
- Hvsterese
  - Durch Angabe einer Hysterese können Sie beispielsweise das ständige Auslösen des Alarms verhindern, wenn der Wert eines Gebersignals um einen Vergleichswert schwankt.

#### Schematischer Aufbau

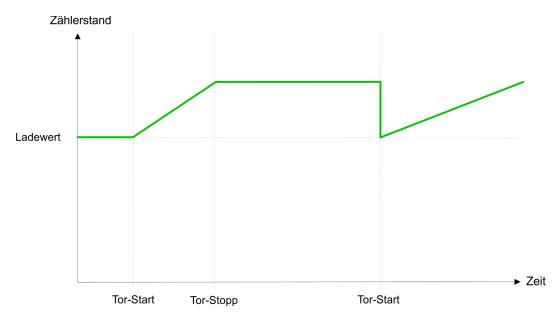
Die Abbildung zeigt, wie die Zusatzfunktionen das Zählverhalten beeinflussen. Auf den Folgeseiten sind diese Zusatzfunktionen näher erläutert:

Zähler Zusatzfunktionen

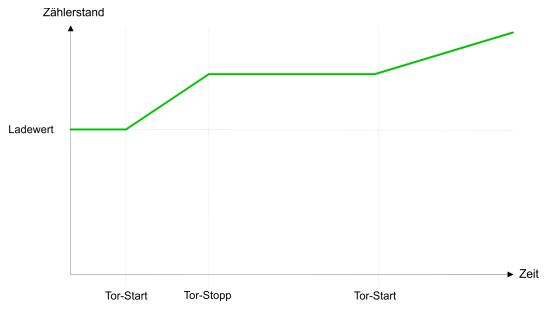


#### **Tor-Funktion**

Die Aktivierung bzw. Deaktivierung des Zählers erfolgt über ein internes Tor (I-Tor). Das I-Tor entspricht dem Softwaretor (SW-Tor). Das SW-Tor öffnen (aktivieren) Sie über Ihr Anwenderprogramm über eine Flanke 0-1 an Bit SW\_GATE\_SET im Ausgabebereich im Control-Wort. Über eine Flanke 0-1 an Bit SW\_GATE\_RESET wird das SW-Tor wieder geschlossen (deaktiviert). Wurde das I-Tor bei "Einmalig Zählen" automatisch geschlossen, kann dies nur über eine Flanke 0-1 an SW\_GATE\_SET wieder geöffnet werden. Folgende Zustände beeinflussen das I-Tor:


| SW-Tor         | beeinflusst das |  |
|----------------|-----------------|--|
|                | I-Tor           |  |
| 0              | 0               |  |
| 1              | 1               |  |
| mit Flanke 0-1 | 1               |  |

Abbrechende und unterbrechende Tor-Funktion


Über die Parametrierung bestimmen Sie, ob das Tor den Zählvorgang abbrechen oder unterbrechen soll.

■ Bei abbrechender Tor-Funktion beginnt der Zählvorgang nach erneutem Tor-Start ab dem Ladewert.

Zähler Zusatzfunktionen



Bei *unterbrechender Tor-Funktion* wird der Zählvorgang nach Tor-Start beim aktuellen *Zählerwert* fortgesetzt.



#### Vergleichsfunktion

Den Vergleichswert geben Sie über den Ausgabebereich vor. Das Vergleichsbit finden Sie im Zählerstatus unter STS\_COMP. Bitte beachten Sie, dass nur dann das Bit STS\_COMP angesteuert werden kann, wenn im Zählerstatus das Bit STS\_CTRL\_COMP gesetzt ist. Folgendes Verhalten können Sie für das Vergleichsbit über die Parametrierung einstellen:

- Kein Vergleich: Vergleichsbit wird nicht beeinflusst.
- Zählerwert ≥ Vergleichswert: Vergleichsbit wird gesetzt
- Zählerwert ≤ Vergleichswert: Vergleichsbit wird gesetzt
- Zählerwert = Vergleichswert: Vergleichsbit wird gesetzt

#### Kein Vergleich

Das Vergleichsbit wird nicht beeinflusst.

Vergleichsbit wird gesetzt wenn Zählerwert ≥ Vergleichswert

Solange der Zählerwert größer oder gleich dem Vergleichswert ist, bleibt das Vergleichsbit gesetzt.

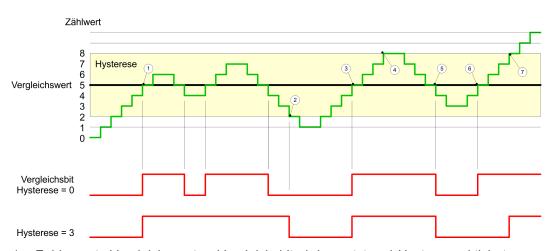
Zähler Zusatzfunktionen

Vergleichsbit wird gesetzt, wenn Zählerwert ≤Vergleichswert

Solange der Zählerwert kleiner oder gleich dem Vergleichswert ist, bleibt das Vergleichsbit gesetzt.

Vergleichsbit wird gesetzt, wenn Zählerwert = Vergleichswert

Sobald der Zählerwert gleich Vergleichswert ist, wird das Vergleichsbit gesetzt. Das Bit bleibt solange gesetzt, bis die Vergleichsbedingung nicht mehr erfüllt ist. Wenn Sie eine Hauptzählrichtung eingestellt haben, wird das Vergleichsbit nur bei Erreichen des Vergleichswertes aus der Hauptzählrichtung gesetzt.

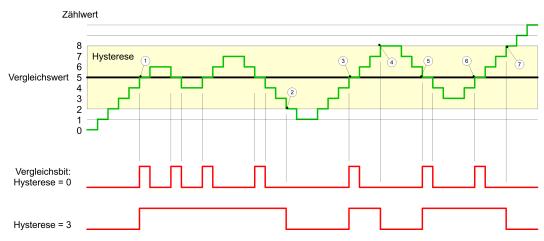



Zusammen mit dem Bit STS\_COMP wird das Bit STS\_CMP im Zählerstatus gesetzt. Im Gegensatz zum Bit STS\_COMP bleibt dies aber solange gesetzt, bis dies mit RES\_SET im Control-Wort zurückgesetzt wird.

#### **Hysterese**

Die *Hysterese* dient beispielsweise zur Vermeidung von häufigen Alarmen, wenn der *Zählerwert* im Bereich des *Vergleichswertes* liegt. Für die *Hysterese* können Sie einen Bereich zwischen 0 und 255 vorgeben. Mit den Einstellungen 0 und 1 ist die *Hysterese* abgeschaltet. Die *Hysterese* wirkt auf Nulldurchgang, Über-/Unterlauf und *Vergleichswert*. Eine aktive *Hysterese* bleibt nach der Änderung aktiv. Der neue Hysterese-Bereich wird beim nächsten Hysterese-Ereignis aktiv. In den nachfolgenden Abbildungen ist das Verhalten des *Vergleichsbits* bei *Hysterese* 0 und Hysterese 3 für die entsprechenden Bedingungen dargestellt:

#### Wirkungsweise bei Zählerwert ≥ Vergleichswert




- 1 Zählerwert ≥Vergleichswert → Vergleichsbit wird gesetzt und Hysterese aktiviert
- 2 Verlassen des *Hysterese*-Bereichs → *Vergleichsbit* wird zurückgesetzt
- 3 Zählerwert ≥ Vergleichswert → Vergleichsbit wird gesetzt und Hysterese aktiviert
- 4 Verlassen des *Hysterese*-Bereichs, *Vergleichsbit* bleibt gesetzt, da *Zählerwert* ≥ *Vergleichswert*
- 5 Zählerwert < Vergleichswert und Hysterese aktiv → Vergleichsbit wird zurückgesetzt
- 6 Zählerwert ≥ Vergleichswert → Vergleichsbit wird nicht gesetzt, da Hysterese aktiviert ist
- 7 Verlassen des *Hysterese*-Bereichs, *Vergleichsbit* wird gesetzt, da *Zählerwert* ≥ Vergleichswert

Mit dem Erreichen der Vergleichsbedingung wird die *Hysterese* aktiv. Bei aktiver *Hysterese* bleibt das Vergleichsergebnis solange unverändert, bis der *Zählerwert* den eingestellten *Hysterese*-Bereich verlässt. Nach Verlassen des *Hysterese*-Bereichs wird erst wieder mit Erreichen der Vergleichsbedingungen die *Hysterese* aktiviert.

Diagnose und Alarm

Wirkungsweise bei Zählerwert = Vergleichswert



- 1 Zählerwert = Vergleichswert → Vergleichsbit wird gesetzt und Hysterese aktiviert
- 2 Verlassen des Hysterese-Bereichs → Vergleichsbit wird zurückgesetzt und Zählerwert < Vergleichswert</p>
- 3 Zählerwert = Vergleichswert → Vergleichsbit wird gesetzt und Hysterese aktiviert
- 4 Vergleichsbit wird zurückgesetzt, da Verlassen des Hysterese-Bereichs, und Zählerwert > Vergleichswert
- 5 Zählerwert = Vergleichswert → Vergleichsbit wird gesetzt und Hysterese aktiviert
- 6 Zählerwert = Vergleichswert und Hysterese aktiv → Vergleichsbit bleibt gesetzt
- 7 Verlassen des *Hysterese*-Bereichs und *Zählerwert* > Vergleichswert → *Vergleichsbit* wird zurückgesetzt

Mit dem Erreichen der Vergleichsbedingung wird die *Hysterese* aktiv. Bei aktiver *Hysterese* bleibt das Vergleichsergebnis solange unverändert, bis der *Zählerwert* den eingestellten *Hysterese*-Bereich verlässt. Nach Verlassen des *Hysterese*-Bereichs wird erst wieder mit Erreichen der Vergleichsbedingungen die *Hysterese* aktiviert.

### 4.6 Diagnose und Alarm

#### Übersicht

| Auslöser               | Prozessalarm | Diagnosealarm | parametrierbar |
|------------------------|--------------|---------------|----------------|
| Überlauf               | X            | -             | X              |
| Unterlauf              | X            | -             | X              |
| Vergleichswert         | X            | -             | X              |
| Endwert                | X            | -             | X              |
| Diagnosepufferüberlauf | -            | X             | -              |
| Prozessalarm verloren  | -            | X             | -              |

#### Prozessalarmdaten

Damit Sie auf asynchrone Ereignisse reagieren können, haben Sie die Möglichkeit Prozessalarme zu aktivieren. Ein Prozessalarm unterbricht den linearen Programmablauf und verzweigt je nach Master-System in eine bestimmte Interrupt-Routine. Hier können Sie entsprechend auf den Prozessalarm reagieren.

Bei CANopen werden die Prozessalarmdaten über ein Emergency-Telegramm übertragen.

Bei Zugriff über CPU, PROFIBUS und PROFINET erfolgt die Übertragung der Prozessalarmdaten mittels Diagnosetelegramm.

SX - Subindex für Zugriff über EtherCAT mit Index 5000h

Diagnose und Alarm

| Name    | Bytes | Funktion             | Default | SX      |
|---------|-------|----------------------|---------|---------|
| PRIT_A  | 1     | Prozessalarmdaten    | 00h     | 02h     |
| PRIT_B  | 1     | Zustand der Eingänge | 00h     | 03h     |
| PRIT_US | 2     | μs-Ticker            | 00h     | 04h 05h |

#### PRIT\_A Prozessalarmdaten

| Byte | Bit 7 0                                                                                                                                                                                                                                                     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | Prozessalarmdaten ■ Bit 1 0: reserviert                                                                                                                                                                                                                     |
|      | <ul> <li>Bit 2: Z0: Überlauf, Unterlauf oder Endwert erreicht</li> <li>Bit 3: Z0: Vergleichswert erreicht</li> <li>Bit 5 4: reserviert</li> <li>Bit 6: Z1: Überlauf, Unterlauf oder Endwert erreicht</li> <li>Bit 7: Z1: Vergleichswert erreicht</li> </ul> |

# PRIT\_B Zustand der Eingänge

| Byte | Bit 7 0                                                                                                                                                       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | Zustand der Eingänge zum Zeitpunkt des Prozessalarms                                                                                                          |
|      | <ul> <li>Bit 0: Eingangswert Kanal 0 (Z0: SpurA)</li> <li>Bit 1: Eingangswert Kanal 1 (Z0: SpurB)</li> <li>Bit 2: Eingangswert Kanal 2 (Z1: SpurA)</li> </ul> |
|      | ■ Bit 3: Eingangswert Kanal 3 (Z1: SpurB) ■ Bit 7 4 reserviert                                                                                                |

#### PRIT\_US µs-Ticker

| Byte | Bit 7 0                                            |
|------|----------------------------------------------------|
| 0 1  | Wert des µs-Ticker bei Auftreten des Prozessalarms |

µs-Ticker

Im SLIO-Modul befindet sich ein 16-Bit Timer (µs-Ticker), welcher mit NetzEIN gestartet wird und nach 2<sup>16</sup>-1µs wieder bei 0 beginnt.

#### Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose<sub>kommend</sub> bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm<sub>gehend</sub>. Wurde für einen Kanal ein Diagnosealarm<sub>kommend</sub> wegen Prozessalarm verloren ausgelöst, gehen alle Ereignisse bis zum entsprechenden Diagnosealarm<sub>gehend</sub> verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm<sub>kommend</sub> bis letzter Diagnosealarm<sub>gehend</sub>) leuchtet die MF-LED des Moduls.

- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Diagnose und Alarm

| Name             | Bytes | Funktion                      | Default | DS  | IX    | SX      |
|------------------|-------|-------------------------------|---------|-----|-------|---------|
| ERR_A            | 1     | Diagnose                      | 00h     | 01h | 2F01h | 02h     |
| MODTYP           | 1     | Modulinformation              | 18h     |     |       | 03h     |
| ERR_C            | 1     | reserviert                    | 00h     |     |       | 04h     |
| ERR_D            | 1     | Diagnose                      | 00h     |     |       | 05h     |
| CHTYP            | 1     | Kanaltyp                      | 76h     |     |       | 06h     |
| NUMBIT           | 1     | Anzahl Diagnosebits pro Kanal | 08h     |     |       | 07h     |
| NUMCH            | 1     | Anzahl Kanäle des Moduls      | 02h     |     |       | 08h     |
| CHERR            | 1     | Kanalfehler                   | 00h     |     |       | 09h     |
| CH0ERR           | 1     | Kanalspezifischer Fehler Z0   | 00h     |     |       | 0Ah     |
| CH1ERR           | 1     | Kanalspezifischer Fehler Z1   | 00h     |     |       | 0Bh     |
| CH2ERR<br>CH7ERR | 7     | reserviert                    | 00h     |     |       | 0Ch 11h |
| DIAG_US          | 4     | μs-Ticker                     | 00h     |     |       | 13h     |

### ERR\_A Diagnose

| Byte | Bit 7 0                                                                                                                                                                                                                     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | <ul> <li>Bit 0: gesetzt bei Baugruppenstörung</li> <li>Bit 1: gesetzt bei Fehler intern</li> <li>Bit 2: gesetzt bei Fehler extern</li> <li>Bit 3: gesetzt bei Kanalfehler vorhanden</li> <li>Bit 7 4: reserviert</li> </ul> |

# **MODTYP Modulinformation**

| Byte | Bit 7 0                                                                                                                                                     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | <ul> <li>Bit 3 0: Modulklasse</li> <li>1000b: Funktionsmodul</li> <li>Bit 4: gesetzt bei Kanalinformation vorhanden</li> <li>Bit 7 5: reserviert</li> </ul> |

### ERR\_C reserviert

| Byte | Bit 7 0    |
|------|------------|
| 0    | reserviert |

### ERR\_D Diagnose

| Byte | Bit 7 0                                                                                                                                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | <ul> <li>Bit 2 0: reserviert</li> <li>Bit 3: gesetzt bei internem Diagnosepufferüberlauf</li> <li>Bit 5 4: reserviert</li> <li>Bit 6: Prozessalarm verloren</li> <li>Bit 7: reserviert</li> </ul> |

Diagnose und Alarm

#### **CHTYP Kanaltyp**

| Byte | Bit 7 0                                                                                        |
|------|------------------------------------------------------------------------------------------------|
| 0    | <ul> <li>Bit 6 0: Kanaltyp</li> <li>76h: Zählerbaugruppe</li> <li>Bit 7: reserviert</li> </ul> |

#### **NUMBIT Diagnosebits**

| Byte | Bit 7 0                                                 |
|------|---------------------------------------------------------|
| 0    | Anzahl der Diagnosebits des Moduls pro Kanal (hier 08h) |

#### **NUMCH Kanäle**

| Byte | Bit 7 0                                   |
|------|-------------------------------------------|
| 0    | Anzahl der Kanäle eines Moduls (hier 02h) |

#### **CHERR Kanalfehler**

| Byte | Bit 7 0                                                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | <ul> <li>Bit 0: gesetzt bei Fehler Kanalgruppe 0</li> <li>Bit 1: gesetzt bei Fehler Kanalgruppe 1</li> <li>Bit 7 2: reserviert</li> </ul> |

# CH0ERR ... CH1ERR kanalspezifisch

| Byte | Bit 7 0                                                                                    |
|------|--------------------------------------------------------------------------------------------|
| 0    | Diagnosealarm wegen Prozessalarm verloren auf                                              |
|      | Bit 1 0: reserviert                                                                        |
|      | <ul><li>Bit 2: Überlauf/Unterlauf/Endwert</li><li>Bit 3: Vergleichswert erreicht</li></ul> |
|      | ■ Bit 7 4: reserviert                                                                      |

# CH2ERR ... CH7ERR reserviert

| Byte | Bit 7 0    |
|------|------------|
| 0    | reserviert |

#### DIAG\_US µs-Ticker

| Byte | Bit 7 0                                       |
|------|-----------------------------------------------|
| 0 3  | Wert des µs-Ticker bei Auftreten der Diagnose |

μs-Ticker

Im SLIO-Modul befindet sich ein 32-Bit Timer ( $\mu$ s-Ticker), welcher mit NetzEIN gestartet wird und nach  $2^{32}$ - $1\mu$ s wieder bei 0 beginnt.